cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306521 Least integer N > 2 such that the number of primes (<=N) <= the number of base-n-zero containing numbers (<=N).

Original entry on oeis.org

3, 3, 4, 28, 42, 104, 136, 329, 510, 856, 1449, 2212, 2782, 3434, 4188, 5042, 6001, 7082, 8276, 9604, 11062, 12666, 14405, 31651, 35694, 40061, 66427, 73966, 108764, 149756, 197516, 288280, 354924, 515538, 701002, 963687, 1318399, 1840377
Offset: 2

Views

Author

Hieronymus Fischer, Mar 29 2019

Keywords

Comments

a(n) <= A306526(n), equality holds for n = 2, 14, 15, 16, 17, 18, 19, 20, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52 (but a(n) < A306526(n) for all other indices n up to 82). For sufficiently large n, equality holds true for those bases n which satisfy 1/2 <= fract(sqrt(n/log(n)) + O(sqrt(log(n)/n))) < 3/4. This is true for infinitely many further indices, at least for all bases n = ceiling(x), where x is a solution of x/log(x) = k-th triangular number + 1/4, k > 1. For k = 2..10 the corresponding bases are n = 19, 48, 92, 152, 230, 326, 440, 574, 727. Let e(n) be the number of bases m <= n for which a(m) = A306526(m), then lim_{n->infinity} e(n)/n >= 1/4. Conjecture: lim_{n->infinity} e(n)/n = 1/4.

Examples

			a(2) = 3, since pi(3) = 2 <= 2 = numOfZeroNum_2(3), where numOfZeroNum_2(m) is the number of base-2-zero containing numbers <= m and pi(m) = number of primes <= m. The first base-2-zero containing numbers are 0 = 0_2, 2 = 10_2, 4 = 100_2, ... (Hint: numbers <= 2 are out of scope for self-evident reasons).
a(3) = 3, since pi(3) = 2 <= 2 = numOfZeroNum_3(3), where numOfZeroNum_3(m) is the number of base-3-zero containing numbers <= m and pi(m) = number of primes <= m. The first base-3-zero containing numbers are 0 = 0_2, 3 = 10_3, 6 = 20_3, 9 = 100_3, 10 = 101_3, 11 = 102_3, 12 = 120_3, ...
a(4) = 4, since pi(3) = 2 > 1 = numOfZeroNum_4(3), pi(4) = 2 <= 2 = numOfZeroNum_4(4), where numOfZeroNum_4(m) is the number of base-4-zero containing numbers <= m and pi(m) = number of primes <= m. The first base-4-zero containing numbers are 0 = 0_2, 4 = 10_4, 8 = 20_4, ...
		

Crossrefs

Programs

  • PARI
    cz(m,n) = vecmin(digits(m, n))==0;
    a(n) = {my(m=2, nbz=1+sum(k=1, 2, cz(k,n)), pmp=primepi(2)); for (m=3, oo, if (isprime(m), pmp++); if (cz(m,n), nbz++); if (pmp <= nbz, return (m)););} \\ Michel Marcus, Jun 10 2019

Formula

With numOfZeroNum_n(k) [= the number of base-n-zero containing numbers <= k] and pi(k) [= the number of primes <= k] and d := log(n-1)/log(n):
a(n) = min(k > 2 | pi(k) <= numOfZeroNum_n(k)). Because of d = d(n) < 1, numOfZeroNum_n(k) = k*(1 + O(k^(d-1)), pi(k) = k/log(k)*(1+o(1)), and pi(3) = 2 >= 2 = numOfZeroNum_n(3), this minimum always exists (for n > 2). The case n = 2 is obvious. See A324160 regarding general formulas for numOfZeroNum_n(k).
Estimate of the n-th term:
a(n) > e*(1 + c1/c2*(1 + sqrt(1 + c2*c3/c1^2)))^(1/(1-d)), for n > 6,
where d := log(n-1)/log(n),
c0 := e^(1-d),
c1 := (n-1)^d/(n-2) - 1/e^(sqrt(n*log(n))) - d*c0,
c2 := (n-1)^d/(n-2) - 1/e^(sqrt(n*log(n))) + (1 - 1/sqrt(n*log(n)))*c0,
c3 := 2*(1-d)*c0.
Also, but less accurate, for n > 6,
a(n) > e*(1 + 1/(sqrt(n*log(n)) - 2))^(1/(1-d)).
a(n) > e*(1 + 1/(sqrt(n*log(n)) - 2))^((n-1/2)*log(n)).
a(n) <= A306526(n), see A306526 for further upper bound estimations.
Asymptotic behavior:
a(n) = O(sqrt(n)*e^sqrt(n*log(n))).
lim sup a(n)/e^(sqrt(n*log(n))+(log(n)+1)/2) = 1, for n --> infinity.
lim inf a(n)/e^(sqrt(n*log(n))+1/2) = 1, for n --> infinity.