cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306512 Number A(n,k) of permutations p of [n] having no index i with |p(i)-i| = k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 9, 1, 1, 2, 3, 5, 44, 1, 1, 2, 6, 9, 21, 265, 1, 1, 2, 6, 14, 34, 117, 1854, 1, 1, 2, 6, 24, 53, 176, 792, 14833, 1, 1, 2, 6, 24, 78, 265, 1106, 6205, 133496, 1, 1, 2, 6, 24, 120, 362, 1554, 8241, 55005, 1334961
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2019

Keywords

Examples

			A(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
A(4,1) = 5: 1234, 1432, 3214, 3412, 4231.
A(4,2) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.
Square array A(n,k) begins:
     1,   1,    1,    1,    1,    1,    1,    1, ...
     0,   1,    1,    1,    1,    1,    1,    1, ...
     1,   1,    2,    2,    2,    2,    2,    2, ...
     2,   2,    3,    6,    6,    6,    6,    6, ...
     9,   5,    9,   14,   24,   24,   24,   24, ...
    44,  21,   34,   53,   78,  120,  120,  120, ...
   265, 117,  176,  265,  362,  504,  720,  720, ...
  1854, 792, 1106, 1554, 2119, 2790, 3720, 5040, ...
		

Crossrefs

Columns k=0-3 give: A000166, A078480, A306523, A324365.
A(n+2j,n+j) (j=0..5) give: A000142, A001564, A001688, A023043, A023045, A023047.
A(2n,n) gives A306535.
Cf. A306506.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k>=n, n!, LinearAlgebra[
          Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    b:= proc(s, k) option remember; (n-> `if`(n=0, 1, add(
          `if`(abs(i-n)=k, 0, b(s minus {i}, k)), i=s)))(nops(s))
        end:
    A:= (n, k)-> `if`(k>=n, n!, b({$1..n}, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := If[k > n, n!, Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]]]; A[0, 0] = 1;
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 05 2021, from first Maple program *)
    b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[
         If[Abs[i-n] == k, 0, b[s ~Complement~ {i}, k]], {i, s}]]];
    A[n_, k_] := If[k >= n, n!, b[Range@n, k]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 01 2021, from second Maple program *)

Formula

A(n,k) = n! - A306506(n,k).
A(n,n+i) = n! for i >= 0.

A306524 Number of permutations p of [n] having at least one index i with |p(i)-i| = 2.

Original entry on oeis.org

0, 0, 0, 3, 15, 86, 544, 3934, 32079, 292509, 2952702, 32712087, 394749367, 5155010088, 72440184064, 1090017765544, 17486996858151, 297965879586295, 5374189975316350, 102290550351854445, 2049025241258716927, 43089888746430771294, 949172134240270646352
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2019

Keywords

Examples

			a(3) = 3: 231, 312, 321.
a(4) = 15: 1342, 1423, 1432, 2314, 2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4312.
		

Crossrefs

Column k=2 of A306506.

Programs

  • Mathematica
    T[n_, k_] := n! - Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]];
    a[n_] := If[n == 0, 0, T[n, 2]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz in A306506 *)

Formula

a(n) = n! - A306523(n).
Showing 1-2 of 2 results.