A306195 Least integer N > 1 such that the number of base-n-zero containing numbers [<= N] >= the number of base-n-zerofree numbers [<= N].
2, 3, 77, 679, 2809, 18659, 274511, 1123471, 10761677, 222222219, 1329025059, 11257702583, 298693399003, 8722140365427, 18535191127229, 600479950316063, 21047228319925113, 44095690303774235, 1686791892208310919
Offset: 2
Examples
a(2) = 2, since numOfZeroNum_2(2) [= the number of base-2-zero containing numbers <= 2] is greater than or equal to numOfZerofreeNum_2(2) [the number of base-2-zerofree numbers <= 2], i.e., numOfZeroNum_2(2) = 2 >= 1 = numOfZerofreeNum_2(2), and indices < 2 are out of focus by definition. Hint: the zero numbers <= 2 in base 2 are 0 = 0_2 and 2 = 10_2, the only zerofree numbers <= 2 in base 2 is 1 = 1_2. a(3) = 3, since numOfZeroNum_3(3) = 2 <= 2 = numOfZerofreeNum_3(3) but numOfZeroNum_3(k) > numOfZerofreeNum_3(k) for k > 3. Hint: the zero numbers <= 3 in base 3 are 0_3 = 0, and 10_3 = 3, the zerofree numbers <= 3 in base 3 are 1_3 = 1 and 2_3 = 2.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 2..100
Formula
With numOfZeroNum_n(k) [= the number of base-n-zero containing numbers <= k] and numOfZerofreeNum_n(k) [the number of base-n-zerofree numbers <= k] and d := log(n-1)/log(n):
a(n) = min(k > 1 | numOfZeroNum_n(k) >= numOfZerofreeNum_n(k)).
Because of d = d(n) < 1, numOfZeroNum_n(k) = k*(1 + O(k^(d-1)) and numOfZerofreeNum _n(k) = O(k^d) this minimum always exists (for n > 2).
For all bases n >= 2: numOfZeroNum_n(1) = numOfZerofreeNum_n(1).
a(n) = min(k > 1 | numOfZeroNum_n(k) = (n + 1)/2).
a(n) = min(k > 1 | numOfZerofreeNum_n(k) = (n + 1)/2).
Estimate of the n-th term (n > 3): a(n) > (2*(n-1)^d/(n-2))^(1/(1-d)), where d := log(n-1)/log(n).
Also, but less accurate,
a(n) > 2^((n-1/2)*log(n).
a(n) > 2^((n-1/2)*log(n)*e^((11*log(n)+12)/(12*n).
Asymptotic behavior:
a(n) = O(n*2^((n-1/2)*log(n))).
Lower and upper limits:
lim sup a(n)/(n*2^((n-1/2)*log(n))) = 1, for n --> infinity.
lim inf a(n)/(2^((n-1/2)*log(n)) = 1, for n --> infinity.
Comments