A306530 a(n) is the smallest prime q such that Kronecker(q, prime(n)) = 1.
7, 7, 11, 2, 3, 3, 2, 5, 2, 5, 2, 3, 2, 11, 2, 7, 3, 3, 17, 2, 2, 2, 3, 2, 2, 5, 2, 3, 3, 2, 2, 3, 2, 5, 5, 2, 3, 41, 2, 13, 3, 3, 2, 2, 7, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 7, 17, 7, 2, 2, 7, 5, 2, 3, 3, 2, 2, 2, 3, 5, 2, 5, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2
Offset: 1
Keywords
Examples
2, 3, 5, 7, ..., 37 are all quadratic nonresidues modulo prime(38) = 163, while 41 is a quadratic residue modulo 163, so a(38) = 41.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local q,p; q:= ithprime(n); p:= 1: do p:= nextprime(p); if numtheory:-jacobi(p,q)=1 then return p fi od; end proc: map(f, [$1..100]); # Robert Israel, Mar 26 2019
-
Mathematica
a[n_] := Module[{i = 1}, While[KroneckerSymbol[Prime[i], Prime[n]] != 1, i++]; Prime[i]]; Array[a, 100] (* Jean-François Alcover, Jun 08 2020, after PARI *)
-
PARI
a(n)=my(i=1);while(kronecker(prime(i),prime(n))!=1,i++);prime(i)
Comments