A306547 Triangle read by rows, defined by Riordan's general Eulerian recursion: T(n, k) = (k+3)*T(n-1, k) + (n-k-2) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
1, 1, -2, 1, -11, 4, 1, -55, 35, -8, 1, -274, 210, -91, 16, 1, -1368, 986, -637, 219, -32, 1, -6837, 3180, -3473, 1752, -507, 64, 1, -34181, -1431, -17951, 10543, -4563, 1147, -128, 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256, 1, -854494, -1726360, -1490890, -2314, -177832, 84176, -28105, 5627, -512
Offset: 1
Examples
Triangle begins with: 1. 1, -2. 1, -11, 4. 1, -55, 35, -8. 1, -274, 210, -91, 16. 1, -1368, 986, -637, 219, -32. 1, -6837, 3180, -3473, 1752, -507, 64. 1, -34181, -1431, -17951, 10543, -4563, 1147, -128. 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256.
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215.
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Mathematica
e[n_, 0, m_]:= 1; (* Example for m=3 *) e[n_, k_, m_]:= 0 /; k >= n; e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m]; Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}] T[n_, 1]:= 1; T[n_, n_]:= (-2)^(n-1); T[n_, k_]:= T[n, k] = (k+3)*T[n-1, k] + (n-k-2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten
-
PARI
{T(n, k) = if(k==1, 1, if(k==n, (-2)^(n-1), (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)))}; for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")))
-
Sage
def T(n, k): if (k==1): return 1 elif (k==n): return (-2)^(n-1) else: return (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1) [[T(n, k) for k in (1..n)] for n in (1..12)]
Formula
T(n, k) = (k+3)*T(n-1, k) + (n-k-2)*T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
e(n,k,m)= (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) with m=3.
Comments