cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306547 Triangle read by rows, defined by Riordan's general Eulerian recursion: T(n, k) = (k+3)*T(n-1, k) + (n-k-2) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).

Original entry on oeis.org

1, 1, -2, 1, -11, 4, 1, -55, 35, -8, 1, -274, 210, -91, 16, 1, -1368, 986, -637, 219, -32, 1, -6837, 3180, -3473, 1752, -507, 64, 1, -34181, -1431, -17951, 10543, -4563, 1147, -128, 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256, 1, -854494, -1726360, -1490890, -2314, -177832, 84176, -28105, 5627, -512
Offset: 1

Views

Author

G. C. Greubel, Feb 22 2019

Keywords

Comments

Row sums are {1, -1, -6, -27, -138, -831, -5820, -46563, -419070, -4190703, ...}.
The Mathematica code for e(n,k,m) gives eleven sequences of which the first few are in the OEIS (see Crossrefs section).

Examples

			Triangle begins with:
1.
1,      -2.
1,     -11,       4.
1,     -55,      35,      -8.
1,    -274,     210,     -91,    16.
1,   -1368,     986,    -637,   219,    -32.
1,   -6837,    3180,   -3473,  1752,   -507,    64.
1,  -34181,   -1431,  -17951, 10543,  -4563,  1147,  -128.
1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215.

Crossrefs

Cf. A157011 (m=0), A008292 (m=1), A157012 (m=2), A157013 (m=3), this sequence.

Programs

  • Mathematica
    e[n_, 0, m_]:= 1; (* Example for m=3 *)
    e[n_, k_, m_]:= 0 /; k >= n;
    e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
    Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
    T[n_, 1]:= 1; T[n_, n_]:= (-2)^(n-1); T[n_, k_]:= T[n, k] = (k+3)*T[n-1, k] + (n-k-2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten
  • PARI
    {T(n, k) = if(k==1, 1, if(k==n, (-2)^(n-1), (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)))};
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")))
    
  • Sage
    def T(n, k):
        if (k==1): return 1
        elif (k==n): return (-2)^(n-1)
        else: return (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)
    [[T(n, k) for k in (1..n)] for n in (1..12)]

Formula

T(n, k) = (k+3)*T(n-1, k) + (n-k-2)*T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
e(n,k,m)= (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) with m=3.