A306553 Expansion of the 10-adic cube root of -1/11, that is, the 10-adic integer solution to x^3 = -1/11.
9, 6, 8, 2, 3, 8, 1, 4, 2, 0, 2, 0, 6, 9, 8, 3, 8, 9, 4, 5, 4, 0, 6, 0, 0, 9, 6, 8, 6, 1, 3, 4, 7, 8, 0, 6, 6, 7, 1, 6, 5, 5, 3, 6, 4, 9, 9, 0, 2, 7, 1, 7, 4, 2, 6, 5, 1, 4, 0, 6, 9, 0, 7, 0, 8, 7, 8, 1, 4, 1, 2, 6, 6, 9, 4, 2, 5, 3, 5, 7, 4, 9, 6, 4, 4, 0, 5
Offset: 1
Examples
9^3 == 9 == -1/11 (mod 10). 69^3 == 9 == -1/11 (mod 100). 869^3 == 909 == -1/11 (mod 1000). 2869^3 == 909 == -1/11 (mod 10000). ... ...020241832869^3 = ...090909090909 = ...999999999999/11 = -1/11.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
10-adic cube root of p/q:
q=11: this sequence (p=-1), A319740 (p=1);
Programs
-
Maple
op([1,3],padic:-rootp(11*x^3+1,10,100)); # Robert Israel, Mar 24 2019
-
PARI
seq(n)={Vecrev(digits(lift(chinese( Mod((-1/11 + O(5^n))^(1/3), 5^n), Mod((-1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.
Formula
a(n) = 9 - A319740(n) for n >= 2.
Comments