A306555 Expansion of the 10-adic cube root of -1/13, that is, the 10-adic integer solution to x^3 = -1/13.
7, 4, 3, 5, 8, 0, 6, 7, 1, 2, 5, 9, 1, 6, 3, 4, 2, 2, 9, 0, 1, 7, 2, 4, 8, 5, 1, 9, 0, 4, 8, 3, 9, 3, 7, 8, 6, 7, 7, 3, 5, 7, 2, 9, 3, 1, 3, 8, 6, 6, 7, 7, 9, 9, 8, 4, 3, 2, 0, 3, 7, 2, 1, 5, 7, 3, 6, 3, 6, 9, 8, 9, 5, 4, 4, 3, 3, 8, 6, 4, 5, 6, 6, 6, 8, 2, 9
Offset: 1
Examples
7^3 == 3 == -1/13 (mod 10). 47^3 == 23 == -1/13 (mod 100). 347^3 == 923 == -1/13 (mod 1000). 5347^3 == 6923 == -1/13 (mod 10000). ... ...952176085347^3 = ...076923076923 = ...999999999999/13 = -1/13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
10-adic cube root of p/q:
q=13: this sequence (p=-1), A306554 (p=1).
Programs
-
Maple
op([1,3],padic:-rootp(13*x^3+1,10,100)); # Robert Israel, Mar 24 2019
-
PARI
seq(n)={Vecrev(digits(lift(chinese( Mod((-1/13 + O(5^n))^(1/3), 5^n), Mod((-1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.
Formula
a(n) = 9 - A306554(n) for n >= 2.
Comments