cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306557 Numerator coefficients of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E=KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E).

Original entry on oeis.org

1, 1, 9, 1, 54, 225, 1, 243, 4131, 11025, 1, 1008, 50166, 457200, 893025, 1, 4077, 520218, 11708154, 70301925, 108056025, 1, 16362, 5020623, 243313164, 3274844175, 14427513450, 18261468225, 1, 65511, 46789461, 4535570691, 119537963811, 1107456067125, 3821273720775, 4108830350625
Offset: 0

Views

Author

Herbert Eberle, Feb 23 2019

Keywords

Comments

Coefficients of the numerator polynomials of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E = KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E), where e=numeric eccentricity, M=mean anomaly, E=eccentric anomaly. The series is KeplerInv(e,M) = M/(1-e) + Sum_{n>=1} (-1)^n*(Sum_{j=1..n} a(n,j)*e^j)/(1-e)^(3n+1)*M^(2n+1)/(2n+1)! = M/(1-e) - (e/(1-e)^4)*M^3/3! + ((e+9*e^2)/(1-e)^7)*M^5/5! - + ... .
The element a(n,n) with highest index in each row (the diagonal element) has the form Product_{j=1..n} (2*j+1)^2.
The derivative dKepler/dE = 1 - e*cos(E) goes to zero at E = i*arccosh(1/e) in the complex plane. Thus dKeplerInv/dM goes to infinity at M = i*(arccosh(1/e) - sqrt(1-e^2)), so that the radius of convergence of KeplerInv(e,M) is arccosh(1/e) - sqrt(1-e^2). KeplerInv(e,M) converges linearly within the circle of convergence |M| < arccosh(1/e) - sqrt(1-e^2).

Examples

			Matrix (regular triangle) lexicographically ascending in the rows:
  1;
  1,     9;
  1,    54,     225;
  1,   243,    4131,     11025;
  1,  1008,   50166,    457200,     893025;
  1,  4077,  520218,  11708154,   70301925,   108056025;
  1, 16362, 5020623, 243313164, 3274844175, 14427513450, 18261468225;
  ...
		

Crossrefs

Generated by A111785 or A304462, diagonal elements are in A001818.

Formula

While M = E - e*sin(E) = E*(1-e) - e*Sum_{n>=1} (-1)^n*E^(2n+1)/(2n+1)! the formal power series of the compositional inverse KeplerInv(e,M) is as above according to A111785 and A304462.