A306598 Determinant of the circulant matrix whose first column corresponds to the divisors of n.
1, -3, -8, 49, -24, -960, -48, -3375, 676, -8640, -120, -2247392, -168, -34560, -46080, 923521, -288, -28789488, -360, -54867456, -184320, -216000, -528, -89384770560, 15376, -423360, -512000, -438939648, -840, -558786571200, -960, -992436543, -1152000
Offset: 1
Examples
For n = 12: - the divisors of 12 are: 1, 2, 3, 4, 6, 12, - the corresponding circulant matrix is: [ 1 12 6 4 3 2] [ 2 1 12 6 4 3] [ 3 2 1 12 6 4] [ 4 3 2 1 12 6] [ 6 4 3 2 1 12] [12 6 4 3 2 1] - its determinant is -2247392, - hence, a(12) = -2247392.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Circulant matrix
Programs
-
Maple
f:= proc(n) local F,d; uses numtheory, LinearAlgebra; F:= sort(convert(divisors(n),list)); d:= nops(F); Determinant(Matrix(d,d,shape=Circulant[F])) end proc: map(f, [$1..100]); # Robert Israel, Mar 06 2019
-
Mathematica
a[n_] := Module[{dd = Divisors[n], m, r}, m = Length[dd]; r = E^(2 Pi I/m); Product[Sum[dd[[j+1]] r^(j k), {j, 0, m-1}], {k, 0, m-1}] // FullSimplify]; Array[a, 100] (* Jean-François Alcover, Oct 17 2020 *)
-
PARI
a(n) = my (d=divisors(n)); my (m=matrix(#d, #d, i,j, d[1+(i-j)%#d])); return (matdet(m))
Formula
Apparently, a(n) > 0 iff n is a square.
a(p) = p^2 - 1 for any prime number p.
a(p^2) = p^6 - 2*p^3 + 1 for any prime number p.
a(2^k) = A086459(k+1) for any k >= 0.
If p < q are primes, a(p*q) = -(p^4-1)*(q^2-1)^2. - Robert Israel, Mar 06 2019
Comments