cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306598 Determinant of the circulant matrix whose first column corresponds to the divisors of n.

Original entry on oeis.org

1, -3, -8, 49, -24, -960, -48, -3375, 676, -8640, -120, -2247392, -168, -34560, -46080, 923521, -288, -28789488, -360, -54867456, -184320, -216000, -528, -89384770560, 15376, -423360, -512000, -438939648, -840, -558786571200, -960, -992436543, -1152000
Offset: 1

Views

Author

Rémy Sigrist, Feb 27 2019

Keywords

Comments

From Robert Israel, Mar 06 2019: (Start)
a(n) is divisible by A000203(n).
If n is not a square, a(n) is divisible by A000203(n)*A071324(n).
(End)

Examples

			For n = 12:
- the divisors of 12 are: 1, 2, 3, 4, 6, 12,
- the corresponding circulant matrix is:
    [ 1 12  6  4  3  2]
    [ 2  1 12  6  4  3]
    [ 3  2  1 12  6  4]
    [ 4  3  2  1 12  6]
    [ 6  4  3  2  1 12]
    [12  6  4  3  2  1]
- its determinant is -2247392,
- hence, a(12) = -2247392.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,d; uses numtheory, LinearAlgebra;
      F:= sort(convert(divisors(n),list));
      d:= nops(F);
      Determinant(Matrix(d,d,shape=Circulant[F]))
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 06 2019
  • Mathematica
    a[n_] := Module[{dd = Divisors[n], m, r}, m = Length[dd]; r = E^(2 Pi I/m); Product[Sum[dd[[j+1]] r^(j k), {j, 0, m-1}], {k, 0, m-1}] // FullSimplify];
    Array[a, 100] (* Jean-François Alcover, Oct 17 2020 *)
  • PARI
    a(n) = my (d=divisors(n)); my (m=matrix(#d, #d, i,j, d[1+(i-j)%#d])); return (matdet(m))

Formula

Apparently, a(n) > 0 iff n is a square.
a(p) = p^2 - 1 for any prime number p.
a(p^2) = p^6 - 2*p^3 + 1 for any prime number p.
a(2^k) = A086459(k+1) for any k >= 0.
If p < q are primes, a(p*q) = -(p^4-1)*(q^2-1)^2. - Robert Israel, Mar 06 2019