A306611 The middle coefficient in the minimal polynomial for (2*cos(Pi/15))^n.
-4, 26, -49, 246, -619, 2621, -7774, 30126, -97879, 363131, -1237504, 4497801, -15702574, 56538746, -199764994, 716265246, -2545683874, 9110943101, -32474838004, 116135818131, -414537600379, 1481979727826, -5293483738474, 18921861083121, -67610126265619, 241664630238746
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (-4,5,25,5,-4,-1).
Crossrefs
Programs
-
Mathematica
Table[Coefficient[MinimalPolynomial[(2Cos[Pi/15])^n,x],x,2],{n,1,40}]
-
PARI
Vec(-x*(4 - 10*x - 75*x^2 - 20*x^3 + 20*x^4 + 6*x^5) / ((1 + 3*x + x^2)*(1 + x - 9*x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Feb 28 2019
Formula
a(n) = -4*a(n-1) + 5*a(n-2) + 25*a(n-3) + 5*a(n-4) - 4*a(n-5) - a(n-6).
G.f.: -x*(4 - 10*x - 75*x^2 - 20*x^3 + 20*x^4 + 6*x^5) / ((1 + 3*x + x^2)*(1 + x - 9*x^2 + x^3 + x^4)). - Colin Barker, Feb 28 2019
Comments