A306620 Decimal expansion of a constant related to the asymptotics of A324437.
2, 3, 4, 5, 1, 5, 8, 4, 4, 5, 1, 4, 0, 4, 2, 7, 9, 2, 8, 1, 8, 0, 7, 1, 4, 3, 3, 1, 7, 5, 0, 0, 5, 1, 8, 6, 6, 0, 6, 9, 6, 2, 9, 3, 9, 4, 4, 9, 6, 1, 0, 3, 9, 5, 5, 3, 2, 4, 5, 8, 2, 3, 6, 8, 3, 6, 6, 1, 0, 9, 9, 4, 1, 7, 0, 2, 5, 3, 0, 3, 2, 4, 1, 6, 1, 4, 5, 1, 7, 7, 7, 4, 7, 0, 5, 4, 3, 0, 2, 6, 0, 4, 9, 6, 6, 0
Offset: 0
Examples
0.234515844514042792818071433175005186606962939449610395532458236836610994170253...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..158
Formula
Equals limit_{n->oo} A324437(n) / (2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1)).
Equals limit_{n->oo} n*(Product_{i=1..n, j=1..n} ((i/n)^4 + (j/n)^4)) / exp(6*n + n*(n+1)*Integral_{x=0..1, y=0..1} log(x^4 + y^4) dy dx). - Vaclav Kotesovec, Dec 04 2023