cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306620 Decimal expansion of a constant related to the asymptotics of A324437.

Original entry on oeis.org

2, 3, 4, 5, 1, 5, 8, 4, 4, 5, 1, 4, 0, 4, 2, 7, 9, 2, 8, 1, 8, 0, 7, 1, 4, 3, 3, 1, 7, 5, 0, 0, 5, 1, 8, 6, 6, 0, 6, 9, 6, 2, 9, 3, 9, 4, 4, 9, 6, 1, 0, 3, 9, 5, 5, 3, 2, 4, 5, 8, 2, 3, 6, 8, 3, 6, 6, 1, 0, 9, 9, 4, 1, 7, 0, 2, 5, 3, 0, 3, 2, 4, 1, 6, 1, 4, 5, 1, 7, 7, 7, 4, 7, 0, 5, 4, 3, 0, 2, 6, 0, 4, 9, 6, 6, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2019

Keywords

Examples

			0.234515844514042792818071433175005186606962939449610395532458236836610994170253...
		

Crossrefs

Formula

Equals limit_{n->oo} A324437(n) / (2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1)).
Equals limit_{n->oo} n*(Product_{i=1..n, j=1..n} ((i/n)^4 + (j/n)^4)) / exp(6*n + n*(n+1)*Integral_{x=0..1, y=0..1} log(x^4 + y^4) dy dx). - Vaclav Kotesovec, Dec 04 2023