A306625 Regular triangle T(n,k) = binomial(2*n-2*k,n-k)*((n+1)/k)*Sum_{k=0..floor((k-1)/2)} (-1)^k*binomial(2*k,k)*binomial(n+3*k-2*k,k-2*k-1), read by rows.
2, 6, 12, 24, 36, 80, 100, 150, 240, 560, 420, 660, 1020, 1680, 4032, 1764, 2940, 4620, 7224, 12096, 29568, 7392, 13104, 21280, 33320, 52416, 88704, 219648, 30888, 58212, 98280, 156870, 244800, 386496, 658944, 1647360, 128700, 257400, 452760, 742140, 1170540, 1821600, 2882880, 4942080, 12446720
Offset: 1
Examples
Triangle begins 2, 6, 12, 24, 36, 80, 100, 150, 240, 560, 420, 660, 1020, 1680, 4032, 1764, 2940, 4620, 7224, 12096, 29568, ...
Links
- R. T. Eakin, A combinatorial partition of Mersenne numbers arising from spectroscopy, Journal of Number Theory, Volume 132, Issue 10, October 2012, Pages 2166-2183.
Crossrefs
Programs
-
PARI
T(n,r) = binomial(2*n-2*r,n-r)*((n+1)/r)*sum(k=0, (r-1)\2, (-1)^k*binomial(2*r,k)*binomial(n+3*r-2*k,r-2*k-1)); tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")););