A306629 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(Sum_{j>=0} (j!)^k * x^j).
1, 1, -1, 1, -1, 0, 1, -1, -1, 0, 1, -1, -3, -3, 0, 1, -1, -7, -29, -13, 0, 1, -1, -15, -201, -499, -71, 0, 1, -1, -31, -1265, -13351, -13101, -461, 0, 1, -1, -63, -7713, -328975, -1697705, -486131, -3447, 0, 1, -1, -127, -46529, -7946143, -206659569, -369575303, -24266797, -29093, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, ... 0, -1, -3, -7, -15, ... 0, -3, -29, -201, -1265, ... 0, -13, -499, -13351, -328975, ... 0, -71, -13101, -1697705, -206659569, ... 0, -461, -486131, -369575303, -268312660751, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..59, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = -Sum_{j=1..n} (j!)^k * A(n-j,k) for n > 0.