cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306641 A(n,k) = Sum_{j=0..n} (k*n)!/(j! * (n-j)!)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 4, 4, 1, 12, 36, 8, 5, 1, 48, 900, 400, 16, 6, 1, 240, 45360, 94080, 4900, 32, 7, 1, 1440, 3855600, 60614400, 11988900, 63504, 64, 8, 1, 10080, 493970400, 82065984000, 114144030000, 1704214512, 853776, 128, 9
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2019

Keywords

Comments

Columns are the number of maximal chains to multiples of J in the graded poset of (2 X n) antimagic squares. See Stanley. - Arnav Krishna, Jan 13 2023

Examples

			Square array begins:
   1,  1,     1,          1,               1, ...
   2,  2,     4,         12,              48, ...
   3,  4,    36,        900,           45360, ...
   4,  8,   400,      94080,        60614400, ...
   5, 16,  4900,   11988900,    114144030000, ...
   6, 32, 63504, 1704214512, 249344297250048, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol I, Exercise 53, p. 540.

Crossrefs

Columns 0-3 give A000027(n+1), A000079, A002894, A306642, A345646.
Rows 0-1 give A000012, A208529(n+2).
Main diagonal gives A306644.

A345646 a(n) = Sum_{k=0..n} (4*n)! / (k! * (n-k)!)^4.

Original entry on oeis.org

1, 48, 45360, 60614400, 114144030000, 249344297250048, 609148118181867264, 1604207350254328934400, 4471935609925802450718000, 13022708340511827298941600000, 39267738740263529465273799855360, 121811974529188978353365962361671680, 386880842128109815466159332537704902400
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 21 2021

Keywords

Comments

In general, for fixed m >= 1, Sum_{k=0..n} (m*n)! / (k!*(n-k)!)^m ~ (2*m)^(m*n) / (Pi*n)^(m-1).

Crossrefs

Column 4 of A306641.

Programs

  • Mathematica
    Table[Sum[(4*n)! / (k! * (n-k)!)^4, {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ 2^(12*n) / (Pi*n)^3.
Showing 1-2 of 2 results.