cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306653 a(n) = Sum_{m=1..n} Sum_{k=1..n} [k divides n]*[n/k divides m]*A008683(n/k)*n/k*[k divides m + 2^p]*A008683(k)*k, where p can be a positive integer: 1,2,3,4,5,...

Original entry on oeis.org

1, -2, -2, 2, -2, 4, -2, 0, 0, 4, -2, -4, -2, 4, 4, 0, -2, 0, -2, -4, 4, 4, -2, 0, 0, 4, 0, -4, -2, -8, -2, 0, 4, 4, 4, 0, -2, 4, 4, 0, -2, -8, -2, -4, 0, 4, -2, 0, 0, 0, 4, -4, -2, 0, 4, 0, 4, 4, -2, 8, -2, 4, 0, 0, 4, -8, -2, -4, 4, -8, -2, 0, -2, 4, 0, -4, 4, -8, -2, 0, 0, 4, -2, 8, 4
Offset: 1

Views

Author

Mats Granvik, Mar 03 2019

Keywords

Comments

It appears that for p=1 and p=2, a(n) is identically the same for all n except for n equal to multiples of 16. See A306652 for comparison.

Crossrefs

Programs

  • Mathematica
    (* Dirichlet Convolution. *)
    p=1;
    a[n_] := 1/n*Sum[Sum[If[Mod[n, k] == 0, 1, 0]*If[Mod[m, n/k] == 0, 1, 0]*If[Mod[m + 2^p, k] == 0, 1, 0]*MoebiusMu[n/k]*n/k*MoebiusMu[k]*k, {k, 1, n}], {m, 1, n}]; a /@ Range[85]
    (* conjectured faster program *)
    nn = 85;
    b = 4*Select[Range[1, nn, 2], SquareFreeQ];
    bb = Table[DivisorSigma[0, n]*(MoebiusMu[n] + Sum[If[b[[j]] == n, LiouvilleLambda[n]*2/3, 0], {j, 1, Length[b]}]), {n, 1, nn}]
  • PARI
    A306653(n) = (1/n)*sum(m=1, n, sumdiv(n, k, if( !(m%(n/k)) && !((m+(2^1))%k), n*moebius(n/k)*moebius(k),0))); \\ Antti Karttunen, Mar 15 2019

Formula

a(n) = 1/n * Sum_{m=1..n} Sum_{k=1..n} [k divides n]*[n/k divides m]*[k divides m + 2^p]*A008683(n/k)*n/k*A008683(k)*k, where p can be any positive integer: 1,2,3,4,5,...
a(n) = A000005(n)*(A008683(n) + Sum_{j=1..n} [4*A056911(j)=n]*A008836(n)*2/3) (conjectured formula verified for n=1..2500).
Dirichlet generating function, after Daniel Suteu in A298826 and Álvar Ibeas in A076479, appears to be: Sum_{n>=1} a(n)/n^s = (Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + Sum_{n>=2} (1/2/2^(n*(s - 1)))). - Mats Granvik, Apr 07 2019
The conjectured Dirichlet generating function simplifies to: Sum_{n>=1} a(n)/n^s = (Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + 2^(1 - s)/(2^s - 2)). - Steven Foster Clark, Sep 23 2022
Showing 1-1 of 1 results.