A306656 Number of ways to fill a 3D matrix with n distinct values.
1, 1, 6, 18, 144, 360, 6480, 15120, 403200, 2177280, 32659200, 119750400, 8622028800, 18681062400, 784604620800, 11769069312000, 313841848320000, 1067062284288000, 115242726703104000, 364935301226496000, 43792236147179520000, 459818479545384960000
Offset: 0
Keywords
Examples
For n = 6, a(6) = 6480, A007425(6) = 9 namely there are 9 ways to arrange 6 voxels into a 3D matrix: [1,1,6], [1,6,1], [6,1,1], [2,3,1], [3,2,1], [2,1,3], [3,1,2], [1,2,3], [1,3,2]. Then there are 6! ways to fill it with the numbers. 9*6! = 6480.
Programs
-
Maple
with(numtheory): a:= n-> `if`(n=0, 1, add(tau(d), d=divisors(n))*n!): seq(a(n), n=0..23); # Alois P. Heinz, Mar 03 2019
-
Mathematica
A007425[n_] := DivisorSigma[0, #]& /@ Divisors[n] // Total; a[n_] := If[n == 0, 1, A007425[n]*n!]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 02 2025 *)
Formula
a(n) = A007425(n) * n! for n > 0, a(0) = 1.
Extensions
More terms from Alois P. Heinz, Mar 03 2019
Comments