A306658 Decimal expansion of the constant S_1 = Sum_{j>=1} prime(2*j - 1)!/prime(2*j)!.
3, 6, 7, 5, 5, 5, 4, 4, 2, 0, 1, 9, 2, 6
Offset: 0
Examples
S_1 = 0.36755544201926...
References
- M. Ripà, Congetture su interrogativi inediti: tra speculazioni, voli pindarici e riflessioni spicciole, Jun 2012. ISBN 9788863699463
Links
- Wikipedia, Rosser's theorem
Programs
-
Mathematica
a = 0; Do[f = Prime[Range[n - 999999, n]]; Do[a += N[1/Product[k, {k, f[[i]] + 1, f[[i + 1]]}], 100], {i, 1, 1000000, 2}]; Print[n, ": ", N[a, 100]], {n, 1000000, 100000000, 1000000}]; a
-
PARI
suminf(j=1, prime(2*j - 1)!/prime(2*j)!) \\ Michel Marcus, Apr 02 2019
Formula
Sum_{j>=1} prime(2*j - 1)!/prime(2*j)! = 1/3 + Sum_{j>=2} 1/(Product{k=prime(2*j - 1) + 1, prime(2*j)} k) = 1/3 + 1/(7*6) + 1/(13*12) + ...
Comments