A306697 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is obtained by applying a Minkowski sum to sets related to the Fermi-Dirac factorizations of n and of k (see Comments for precise definition).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 30, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------------------- 1| 1 1 1 1 1 1 1 1 1 1 1 1 2| 1 2 3 4 5 6 7 8 9 10 11 12 3| 1 3 5 9 7 15 11 27 25 21 13 45 4| 1 4 9 16 25 36 49 64 81 100 121 144 5| 1 5 7 25 11 35 13 125 49 55 17 175 6| 1 6 15 36 35 30 77 216 225 210 143 540 7| 1 7 11 49 13 77 17 343 121 91 19 539 8| 1 8 27 64 125 216 343 128 729 1000 1331 1728 9| 1 9 25 81 49 225 121 729 625 441 169 2025 10| 1 10 21 100 55 210 91 1000 441 110 187 2100 11| 1 11 13 121 17 143 19 1331 169 187 23 1573 12| 1 12 45 144 175 540 539 1728 2025 2100 1573 720
Links
- Rémy Sigrist, PARI program for A306697
- OEIS Wiki, "Fermi-Dirac representation" of n
- Eric Weisstein's World of Mathematics, Distributive
- Wikipedia, Minkowski addition
Crossrefs
Programs
-
PARI
\\ See Links section.
Formula
For any m > 0, n > 0, k > 0, i >= 0, j >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 3) = A003961(n),
- T(n, 4) = n^2 (A000290),
- T(n, 5) = A357852(n),
- T(n, 7) = A045968(n) (when n > 1),
- T(n, 11) = A045970(n) (when n > 1),
- T(n, 2^(2^i)) = n^(2^i),
- T(2^i, 2^j) = 2^A067138(i, j),
- T(2^(2^i), 2^(2^j)) = 2^(2^(i + j)),
From Peter Munn, Dec 05 2019:(Start)
Equivalently, T(prime(i_1 - 1)^(2^(j_1)), prime(i_2 - 1)^(2^(j_2))) = prime(i_1+i_2 - 1)^(2^(j_1+j_2)), where prime(i) = A000040(i).
(End)
Comments