A306713 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 0, 0, 0, 0, 0, 0, 0, ... 2, 1, 0, 0, 0, 0, 0, 0, 0, ... 3, 1, 1, 0, 0, 0, 0, 0, 0, ... 5, 1, 1, 1, 0, 0, 0, 0, 0, ... 8, 2, 0, 1, 1, 0, 0, 0, 0, ... 13, 2, 1, 0, 1, 1, 0, 0, 0, ... 21, 3, 2, 0, 0, 1, 1, 0, 0, ... 34, 4, 1, 1, 0, 0, 1, 1, 0, ... 55, 5, 1, 2, 0, 0, 0, 1, 1, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
Formula
A(n,k) = Sum_{j=0..floor(n/k)} binomial(j,n-k*j).
Comments