A306727 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) is the number of partitions of 3*n into powers of 3 less than or equal to 3^k.
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 5, 5, 1, 1, 2, 3, 5, 7, 6, 1, 1, 2, 3, 5, 7, 9, 7, 1, 1, 2, 3, 5, 7, 9, 12, 8, 1, 1, 2, 3, 5, 7, 9, 12, 15, 9, 1, 1, 2, 3, 5, 7, 9, 12, 15, 18, 10, 1, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 11, 1, 1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 26, 12, 1
Offset: 0
Examples
A(3,3) = 5, because there are 5 partitions of 3*3=9 into powers of 3 less than or equal to 3^3=9: [9], [3,3,3], [3,3,1,1,1], [3,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, ... 1, 3, 3, 3, 3, 3, ... 1, 4, 5, 5, 5, 5, ... 1, 5, 7, 7, 7, 7, ... 1, 6, 9, 9, 9, 9, ...
Links
- Serguei Zolotov, Table of n, a(n) for n = 0..10584
Programs
-
Mathematica
nmax = 12; f[k_] := f[k] = 1/(1-x) 1/Product[1-x^(3^j), {j, 0, k-1}] + O[x]^(nmax+1) // CoefficientList[#, x]&; A[n_, k_] := f[k][[n+1]]; Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 20 2019 *)
-
Python
def aseq(p, x, k): # generic algorithm for any p - power base, p=3 for this sequence if x < 0: return 0 if x < p: return 1 # coefficients arr = [0]*(x+1) arr[0] = 1 m = p**k while m > 0: for i in range(m, x+1, m): arr[i] += arr[i-m] m //= p return arr[x] def A(n, k): p = 3 return aseq(p, p*n, k) # A(n, k), 5 = A(3, 3) = aseq(3, 3*3, 3) # Serguei Zolotov, Mar 13 2019
Formula
G.f. of column k: 1/(1-x) * 1/Product_{j=0..k-1} (1 - x^(3^j)).
Comments