A341339 Square array read by descending antidiagonals where the row n (n >= 2) and column k (k >= 1) contains the largest number not greater than 2^k that has exactly n divisors, or 0 if such a number does not exist.
2, 3, 0, 7, 4, 0, 13, 4, 0, 0, 31, 9, 8, 0, 0, 61, 25, 15, 0, 0, 0, 127, 49, 27, 16, 0, 0, 0, 251, 121, 62, 16, 12, 0, 0, 0, 509, 169, 125, 16, 32, 0, 0, 0, 0, 1021, 361, 254, 81, 63, 0, 0, 0, 0, 0, 2039, 961, 511, 81, 124, 64, 30, 0, 0, 0, 0, 4093, 1849, 1018, 81, 245, 64, 56, 0, 0, 0, 0, 0
Offset: 2
Examples
Array begins: k = 1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------------------- n = 2 | 2, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, ... n = 3 | 0, 4, 4, 9, 25, 49, 121, 169, 361, 961, 1849, 3721, ... n = 4 | 0, 0, 8, 15, 27, 62, 125, 254, 511, 1018, 2047, 4087, ... n = 5 | 0, 0, 0, 16, 16, 16, 81, 81, 81, 625, 625, 2401, ... n = 6 | 0, 0, 0, 12, 32, 63, 124, 245, 508, 1017, 2043, 4084, ... n = 7 | 0, 0, 0, 0, 0, 64, 64, 64, 64, 729, 729, 729, ... n = 8 | 0, 0, 0, 0, 30, 56, 128, 255, 506, 1023, 2037, 4094, ... n = 9 | 0, 0, 0, 0, 0, 36, 100, 256, 484, 676, 1521, 3844, ... n = 10 | 0, 0, 0, 0, 0, 48, 112, 208, 512, 976, 2032, 4016, ... n = 11 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 1024, 1024, ... n = 12 | 0, 0, 0, 0, 0, 60, 126, 234, 500, 1014, 2048, 4086, ... n = 13 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096, ... ...
Links
- Serguei Zolotov, Antidiagonals of table of n, a(n) for n = 2..2081
- Serguei Zolotov, Python script to generate A341339 combining different methods
Programs
-
Python
import sympy # k = 1,2,3,... # n = 2,3,4,... def a(k, n): a = 2**k while a > 0 and sympy.divisor_count(a) != n: a = a - 1 return a
Comments