A306737 Irregular triangle where row n is a list of indices in A002110 with multiplicity whose product is A002182(n).
0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 3, 2, 3, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 4, 2, 4, 1, 1, 1, 4, 1, 2, 4, 1, 1, 2, 4, 2, 2, 4, 1, 1, 1, 2, 4, 1, 2, 2, 4, 1, 1, 1, 1, 2, 4, 1, 1, 3, 4, 1, 2, 5, 2, 2, 2, 4, 1, 1, 1, 3, 4, 1, 1, 2, 5, 2, 2, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 1, 1, 1, 1, 2, 5
Offset: 1
Examples
Terms in the first rows n of this sequence, followed by the corresponding primorials whose product = A002182(n): n T(n,k) A002110(T(n,k)) A002182(n) ----------------------------------------------- 1: 0; 1 = 1 2: 1; 2 = 2 3: 1, 1; 2 * 2 = 4 4: 2; 6 = 6 5: 1, 2; 2 * 6 = 12 6: 1, 1, 2; 2 * 2 * 6 = 24 7: 2, 2; 6 * 6 = 36 8: 1, 1, 1, 2; 2 * 2 * 2 * 6 = 48 9: 1, 3; 2 * 30 = 60 10: 1, 1, 3; 2 * 2 * 30 = 120 11: 2, 3; 6 * 30 = 180 12: 1, 1, 1, 3; 2 * 2 * 2 * 30 = 240 13: 1, 2, 3; 2 * 6 * 30 = 360 14: 1, 1, 2, 3; 2 * 2 * 6 * 30 = 720 15: 1, 1, 4; 2 * 2 * 210 = 840 ... Row 6 = {1,1,2} since A002110(1)*A002110(1)*A002110(2) = 2*2*6 = 24 and A002182(6) = 24. The conjugate of {2,1,1} = {3,1} and 24 = 2^3 * 3^1. Row 10 = {1,1,3} since A002110(1)*A002110(1)*A002110(3) = 2*2*30 = 120 and A002182(10) = 120. The conjugate of {3,1,1} = {3,1,1} and 120 = 2^3 * 3^1 * 5^1.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10198, rows 1 <= n <= 1200, flattened.
- Michael De Vlieger, Charts showing terms in A002182 as a product of terms in A002110.
- Michael De Vlieger, Condensed text table showing terms in rows 1 <= n <= 10000.
- Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3.
Programs
-
Mathematica
With[{s = DivisorSigma[0, Range[250000]]}, Map[Reverse@ Table[LengthWhile[#, # >= i &], {i, Max@ #}] &@ If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] /. {} -> {0}] // Flatten
Comments