cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306739 n-th derivative of f_{n+1} at x=1, where f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways.

Original entry on oeis.org

1, 1, 4, 9, 156, 650, 5034, 26054, 4270304, 27617616, 198832320, 6251899104, 46466835072, 5033625978576, 37552294300416, 793996577407560, 6563364026374464, 13221301266369115200, 114481557932032050048, 1114510139284499182656, 109640692903857698897280
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2019

Keywords

Comments

The ordering of the functions f_k is defined in A215703: f_1, f_2, ... = x, x^x, x^(x^2), x^(x^x), x^(x^3), x^(x^x*x), x^(x^(x^2)), x^(x^(x^x)), x^(x^4), x^(x^x*x^2), ... .

Examples

			a(0) = x_{x=1} = 1.
a(1) = (d/dx x^x)_{x=1} = (x^x*(log(x)+1))_{x=1} = log(1)+1 = 1.
a(2) = (d^2/dx^2 x^(x^2))_{x=1} = (x^(x^2) * (2*x*log(x)+x)^2 + x^(x^2) * (2*log(x)+3))_{x=1} = (2*log(1)+1)^2 + 2*log(1)+3 = 4.
a(3) = (d^3/dx^3 x^(x^x))_{x=1} = 9.
a(4) = (d^4/dx^4 x^(x^3))_{x=1} = 156.
		

Crossrefs

Main diagonal of A215703.

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
        end():
    a:= n-> n!*coeff(series(subs(x=x+1, f(n+1)), x, n+1), x, n):
    seq(a(n), n=0..23);
  • Mathematica
    T[n_] := If[n == 1, {x}, Map[x^# &, g[n - 1, n - 1]]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten@ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[Range[Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
    f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
    a[n_] := n!*SeriesCoefficient[f[n+1] /. x -> x+1, {x, 0, n}];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)

Formula

a(n) = A215703(n,n+1).