A306755 a(n) = a(n-6) + a(n-7) with a(0)=7, a(1)=...=a(5)=0, a(6)=6.
7, 0, 0, 0, 0, 0, 6, 7, 0, 0, 0, 0, 6, 13, 7, 0, 0, 0, 6, 19, 20, 7, 0, 0, 6, 25, 39, 27, 7, 0, 6, 31, 64, 66, 34, 7, 6, 37, 95, 130, 100, 41, 13, 43, 132, 225, 230, 141, 54, 56, 175, 357, 455, 371, 195, 110, 231, 532, 812, 826, 566, 305, 341, 763, 1344, 1638, 1392, 871, 646, 1104, 2107
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1).
Crossrefs
Column 6 of A306646.
Programs
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 1, 1}, {7, 0, 0, 0, 0, 0, 6}, 100] (* Amiram Eldar, Jun 21 2021 *)
-
PARI
N=66; x='x+O('x^N); Vec((7-x^6)/(1-x^6-x^7))
Formula
G.f.: (7 - x^6)/(1 - x^6 - x^7).
a(0) = 7 and a(n) = n*Sum_{k=1..floor(n/6)} binomial(k,n-6*k)/k for n > 0.
Comments