A306700 Decimal expansion of the constant S_2 = Sum_{j>=1} prime(2*j)!/prime(2*j + 1)!.
0, 5, 1, 6, 6, 6, 6, 2, 2, 8, 8, 4, 2
Offset: 0
Examples
S_2 = 0.0516666228842...
Links
- Wikipedia, Rosser's theorem
Programs
-
Mathematica
b = 0; Do[f = Prime[Range[n - 999999, n]]; Do[b += N[1/Product[k, {k, f[[i]] + 1, f[[i + 1]]}], 100], {i, 1, 1000000, 2}]; Print[n, ": ", N[b, 100]], {n, 1000001, 100000001, 1000000}]; b
-
PARI
suminf(j=1, prime(2*j)!/prime(2*j + 1)!) \\ Michel Marcus, Apr 02 2019
Formula
Sum_{j>=1} prime(2*j)!/prime(2*j + 1)! = Sum_{j>=1} 1/(Product{k=prime(2*j) + 1, prime(2*j + 1)} k) = 1/(5*4) + 1/(11*10*9*8) + 1/(17*16*15*14) + ...
Comments