cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306796 Primitive abundant numbers (A071395) that are squares.

Original entry on oeis.org

342225, 280495504, 1029447225, 1148667664, 1435045924, 1596961444, 1757705625, 2177622225, 14787776025, 18114198921, 32871503025, 45018230625, 150897287025, 245485566225, 272993710144, 296006724225, 705373218225, 1126920249225, 1329226832241, 1358425215225
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2019

Keywords

Comments

The square roots of the terms are 585, 16748, 32085, 33892, 37882, 39962, 41925, 46665, 121605, 134589, ...

Crossrefs

Intersection of A000290 and A071395.
Cf. A306797, A379949 (most likely gives the odd terms).

Programs

  • Mathematica
    abQ[f_] := Times@@((f[[;;,1]]^(f[[;;,2]]+1)-1)/(f[[;;,1]]-1)) > 2*Times@@Power@@@f;
    nondefQ[f_,g_] := Times@@((f^(g+1)-1)/(f-1)) >= 2*Times@@(f^g);
    sub[f_,k_] := Module[{g=f[[;;,2]]}, n=Length[g]; kk=k-1; Do[g[[i]] = Mod[kk, f[[i,2]]+1]; kk=(kk-g[[i]])/(f[[i,2]]+1), {i,1,n}]; g];
    paQ[f_] := abQ[f] && Module[{nd = Times@@(f[[;;,2]]+1), ans=True}, Do[g=sub[f,k]; If[nondefQ[f[[;;,1]], g], ans=False; Break[]], {k,1,nd-1}]; ans];
    papowerQ[n_, e_] := Module[{f=FactorInteger[n]}, f[[;;,2]]*=e; paQ[f]];
    s={}; e=2; Do[If[papowerQ[m, e], AppendTo[s, m^e]], {m, 2, 50000}]; s
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 2); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) >= 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = for(k = 1, lim, if(is1(k), print1(k^2, ", "))); \\ Amiram Eldar, Mar 12 2025