cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306797 Primitive abundant numbers (A071395) that are cubes.

Original entry on oeis.org

6886512413632368153, 8815747507513708671, 334845050584968548307656, 1254177078562232856388071, 27869863573964698956703125, 108182814324640834480192546875, 384852900473651366592567235048, 520616176957487045802123463832, 567962434462802770687173681448, 1389387861291307410644039382069
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2019

Keywords

Comments

The cube roots of the terms are 1902537, 2065791, 69440786, 107841591, 303187725, ...

Crossrefs

Intersection of A000578 and A071395.
Cf. A306796.

Programs

  • Mathematica
    abQ[f_] := Times@@((f[[;;,1]]^(f[[;;,2]]+1)-1)/(f[[;;,1]]-1)) > 2*Times@@Power@@@f;
    nondefQ[f_,g_] := Times@@((f^(g+1)-1)/(f-1)) >= 2*Times@@(f^g);
    sub[f_,k_] := Module[{g=f[[;;,2]]}, n=Length[g]; kk=k-1; Do[g[[i]] = Mod[kk, f[[i,2]]+1]; kk=(kk-g[[i]])/(f[[i,2]]+1), {i,1,n}]; g];
    paQ[f_] := abQ[f] && Module[{nd = Times@@(f[[;;,2]]+1), ans=True}, Do[g=sub[f,k]; If[nondefQ[f[[;;,1]], g], ans=False; Break[]], {k,1,nd-1}]; ans];
    papowerQ[n_, e_] := Module[{f=FactorInteger[n]}, f[[;;,2]]*=e; paQ[f]];
    s={}; e=3; Do[If[papowerQ[m, e], AppendTo[s, m^e]], {m, 2, 7*10^7}]; s
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 3); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) >= 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = for(k = 1, lim, if(is1(k), print1(k^3, ", "))); \\ Amiram Eldar, Mar 12 2025

Extensions

a(6)-a(10) from Amiram Eldar, Mar 12 2025