cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306799 Expansion of e.g.f. (sec(x) + tan(x))*(BesselI(0,2*x) + BesselI(1,2*x)).

Original entry on oeis.org

1, 2, 5, 14, 43, 151, 597, 2701, 13795, 79129, 503693, 3527292, 26945081, 222997659, 1987492223, 18979143358, 193319844179, 2092211006561, 23974970862885, 289995870991594, 3692342091149853, 49362977658760079, 691359846917532235, 10123067013673200297, 154669070822937580645
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 16 2019

Keywords

Comments

Boustrophedon transform of A001405.

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(Sec[x] + Tan[x]) (BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    t[n_, 0] := Binomial[n, Floor[n/2]]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 25, 0]
  • Python
    from itertools import accumulate, count, islice
    def A306799_gen(): # generator of terms
        blist, a  = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
            a = 2*a*i//(i+1) if i & 1 else 2*a
    A306799_list = list(islice(A306799_gen(),30)) # Chai Wah Wu, Jun 11 2022