A306809 Binomial transform of the continued fraction expansion of e.
2, 3, 6, 12, 23, 46, 98, 213, 458, 972, 2051, 4322, 9098, 19113, 40054, 83748, 174767, 364086, 757298, 1572861, 3262242, 6757500, 13981019, 28894090, 59652314, 123032913, 253522382, 521957844, 1073741831, 2207135966, 4533576578, 9305762469, 19088743546, 39131924268
Offset: 0
Examples
For n = 3, the a(3) = binomial(3,0)*2 + binomial(3,1)*1 + binomial(3,2)*2 + binomial(3,3)*1 = 12.
Links
- Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
Crossrefs
Cf. A003417 (continued fraction for e).
Programs
-
Mathematica
nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 23 2020 *)
-
Sage
def OEISbinomial_transform(N, seq): BT = [seq[0]] k = 1 while k< N: next = 0 j = 0 while j <=k: next = next + ((binomial(k,j))*seq[j]) j = j+1 BT.append(next) k = k+1 return BT econt = oeis('A003417') OEISbinomial_transform(50,econt)
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*b(k), where b(k) is the k-th term of the continued fraction expansion of e.
Conjectures from Colin Barker, Mar 12 2019: (Start)
G.f.: (2 - 11*x + 27*x^2 - 41*x^3 + 40*x^4 - 22*x^5 + 6*x^6) / ((1 - x)*(1 - 2*x)^2*(1 - x + x^2)^2).
a(n) = 7*a(n-1) - 21*a(n-2) + 37*a(n-3) - 43*a(n-4) + 33*a(n-5) - 16*a(n-6) + 4*a(n-7) for n>6.
(End)
Comments