Sarah Arpin has authored 6 sequences.
A307800
Binomial transform of least common multiple sequence (A003418), starting with a(1).
Original entry on oeis.org
1, 3, 11, 37, 153, 551, 2023, 7701, 29417, 107083, 384771, 1408133, 5457961, 22466367, 92977823, 365613181, 1342359393, 4677908531, 16159185307, 58676063493, 231520762361, 967464685783, 4052593703511, 16354948948517, 62709285045913, 229276436653851
Offset: 0
For n = 3, a(3) = binomial(3,0)*1 + binomial(3,1)*2 + binomial(3,2)*6 + binomial(3,3)*12 = 37.
- Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
Binomial transform of
A003418 (shifted).
-
b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
a:= n-> add(b(i+1)*binomial(n, i), i=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 29 2019
-
Table[Sum[Binomial[n, k]*Apply[LCM, Range[k+1]], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jun 06 2019 *)
-
a(n) = sum(k=0, n, binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
-
def OEISbinomial_transform(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + ((binomial(k,j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
LCMSeq = []
for k in range(1,26):
LCMSeq.append(lcm(range(1,k+1)))
OEISbinomial_transform(25, LCMSeq)
A307803
Inverse binomial transform of least common multiple sequence.
Original entry on oeis.org
1, -1, 3, 1, 41, 171, 799, 2633, 7881, 24391, 99611, 461649, 2252953, 10773491, 46602711, 176413201, 596116769, 1899975183, 6302881171, 24136694081, 105765310281, 476455493179, 2033813426063, 8019234229401, 29410337173561, 102444237073751, 347418130583499
Offset: 0
For n = 3, a(3) = binomial(3,0)*1 - binomial(3,1)*2 + binomial(3,2)*6 - binomial(3,3)*12 = 1.
Inverse binomial transform of
A003418 (shifted).
-
b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
a:= n-> add(b(i+1)*binomial(n, i)*(-1)^i, i=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 29 2019
-
b[n_] := b[n] = If[n == 0, 1, LCM[n, b[n - 1]]];
a[n_] := Sum[b[i + 1] Binomial[n, i] (-1)^i, {i, 0, n}];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
-
def SIbinomial_transform(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + (((-1)^j)*(binomial(k,j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
LCMSeq = []
for k in range(1,26):
LCMSeq.append(lcm(range(1,k+1)))
SIbinomial_transform(25, LCMSeq)
A306810
Inverse binomial transform of the continued fraction expansion of e.
Original entry on oeis.org
2, -1, 2, -4, 7, -8, -2, 41, -134, 296, -485, 512, 82, -2107, 6562, -13852, 21871, -22600, -2186, 83105, -255878, 531440, -826685, 846368, 59050, -2952451, 9034498, -18600436, 28697815, -29229256, -1594322, 98848025, -301327046, 617003000, -947027861, 961376768, 43046722
Offset: 0
For n = 3, a(3) = -binomial(3,0)*2 + binomial(3,1)*1 - binomial(3,2)*2 + binomial(3,3)*1 = -4.
- Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
Binomial transform of continued fraction of e:
A306809.
-
nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[(-1)^(n + k)*Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 23 2020 *)
-
def OEISInverse(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
econt = oeis('A003417')
OEISInverse(50,econt)
A306809
Binomial transform of the continued fraction expansion of e.
Original entry on oeis.org
2, 3, 6, 12, 23, 46, 98, 213, 458, 972, 2051, 4322, 9098, 19113, 40054, 83748, 174767, 364086, 757298, 1572861, 3262242, 6757500, 13981019, 28894090, 59652314, 123032913, 253522382, 521957844, 1073741831, 2207135966, 4533576578, 9305762469, 19088743546, 39131924268
Offset: 0
For n = 3, the a(3) = binomial(3,0)*2 + binomial(3,1)*1 + binomial(3,2)*2 + binomial(3,3)*1 = 12.
- Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
Cf.
A003417 (continued fraction for e).
-
nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 23 2020 *)
-
def OEISbinomial_transform(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + ((binomial(k,j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
econt = oeis('A003417')
OEISbinomial_transform(50,econt)
A322519
Inverse binomial transform of the Apéry numbers (A005259).
Original entry on oeis.org
1, 4, 64, 1240, 27640, 667744, 17013976, 450174736, 12250723480, 340711148320, 9641274232384, 276704848753216, 8035189363318936, 235655550312118720, 6970100090159566480, 207674717284507191520, 6227433643414033714840, 187795334412416019255520
Offset: 0
a(2) = binomial(2,0)*A(0) - binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 - binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 64.
-
[(&+[(-1)^(n-k)*Binomial(n,k)*(&+[(Binomial(k,j)*Binomial(k+j,j))^2: j in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 13 2018
-
a:=n->add(binomial(n,i)*(-1)^i*add((binomial(n-i,k)*binomial(n-i+k,k))^2,k=0..n-i),i=0..n): seq(a(n),n=0..20); # Muniru A Asiru, Dec 22 2018
-
a[n_] := Sum[(-1)^(n-k) * Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
-
{a(n) = sum(k=0,n, (-1)^(n-k)*binomial(n,k)*sum(j=0,k, (binomial(k,j)*binomial(k+j,j))^2))};
for(n=0, 20, print1(a(n), ", ")) \\ G. C. Greubel, Dec 13 2018
-
def OEISInverse(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
Apery = oeis('A005259')
OEISInverse(18,Apery)
-
[sum((-1)^(n-k)*binomial(n,k)*sum((binomial(k,j)* binomial(k+j,j))^2 for j in (0..k)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 13 2018
A322518
Binomial transform of the Apéry numbers (A005259).
Original entry on oeis.org
1, 6, 84, 1680, 39240, 999216, 26899896, 752939424, 21691531800, 638947312080, 19155738105504, 582589712312064, 17930566188602136, 557417298916695600, 17477836958370383280, 552090876791399769600, 17552554240486710112920, 561230779055361080132880
Offset: 0
a(2) = binomial(2,0)*A(0) + binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 + binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 84.
-
function BinomialTransform(seq)
N = length(seq)
bt = Array{BigInt,1}(undef,N)
bt[1] = seq[1]
for k in 1:N-1
next = BigInt(0)
for j in 0:k next += binomial(k, j)*seq[j+1] end
bt[k+1] = next
end
bt end
BinomialTransform([A005259(n) for n in 0:18]) |> println # Peter Luschny, Jan 06 2020
-
a[n_] := Sum[Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
-
def OEISbinomial_transform(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + ((binomial(k,j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
Apery = oeis('A005259')
OEISBinom = OEISbinomial_transform(18,Apery.first_terms(20))
Comments