cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sarah Arpin

Sarah Arpin's wiki page.

Sarah Arpin has authored 6 sequences.

A307800 Binomial transform of least common multiple sequence (A003418), starting with a(1).

Original entry on oeis.org

1, 3, 11, 37, 153, 551, 2023, 7701, 29417, 107083, 384771, 1408133, 5457961, 22466367, 92977823, 365613181, 1342359393, 4677908531, 16159185307, 58676063493, 231520762361, 967464685783, 4052593703511, 16354948948517, 62709285045913, 229276436653851
Offset: 0

Author

Sarah Arpin, Apr 29 2019

Keywords

Examples

			For n = 3, a(3) = binomial(3,0)*1 + binomial(3,1)*2 + binomial(3,2)*6 + binomial(3,3)*12 = 37.
		

Crossrefs

Binomial transform of A003418 (shifted).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= n-> add(b(i+1)*binomial(n, i), i=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 29 2019
  • Mathematica
    Table[Sum[Binomial[n, k]*Apply[LCM, Range[k+1]], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jun 06 2019 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
  • Sage
    def OEISbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + ((binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    LCMSeq = []
    for k in range(1,26):
        LCMSeq.append(lcm(range(1,k+1)))
    OEISbinomial_transform(25, LCMSeq)
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 2 (mod 5),
a(n) (mod 10) = 3, if n = 1, 4 (mod 5),
a(n) (mod 10) = 7, if n = 3 (mod 5).

A307803 Inverse binomial transform of least common multiple sequence.

Original entry on oeis.org

1, -1, 3, 1, 41, 171, 799, 2633, 7881, 24391, 99611, 461649, 2252953, 10773491, 46602711, 176413201, 596116769, 1899975183, 6302881171, 24136694081, 105765310281, 476455493179, 2033813426063, 8019234229401, 29410337173561, 102444237073751, 347418130583499
Offset: 0

Author

Sarah Arpin, Apr 29 2019

Keywords

Examples

			For n = 3, a(3) = binomial(3,0)*1 - binomial(3,1)*2 + binomial(3,2)*6 - binomial(3,3)*12 = 1.
		

Crossrefs

Inverse binomial transform of A003418 (shifted).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= n-> add(b(i+1)*binomial(n, i)*(-1)^i, i=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 29 2019
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, LCM[n, b[n - 1]]];
    a[n_] := Sum[b[i + 1] Binomial[n, i] (-1)^i, {i, 0, n}];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
  • Sage
    def SIbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + (((-1)^j)*(binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    LCMSeq = []
    for k in range(1,26):
        LCMSeq.append(lcm(range(1,k+1)))
    SIbinomial_transform(25, LCMSeq)
    

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 3, 4 (mod 5),
a(n) (mod 10) = 9, if n = 1 (mod 5),
a(n) (mod 10) = 3, if n = 2 (mod 5).

A306810 Inverse binomial transform of the continued fraction expansion of e.

Original entry on oeis.org

2, -1, 2, -4, 7, -8, -2, 41, -134, 296, -485, 512, 82, -2107, 6562, -13852, 21871, -22600, -2186, 83105, -255878, 531440, -826685, 846368, 59050, -2952451, 9034498, -18600436, 28697815, -29229256, -1594322, 98848025, -301327046, 617003000, -947027861, 961376768, 43046722
Offset: 0

Author

Sarah Arpin, Mar 11 2019

Keywords

Examples

			For n = 3, a(3) = -binomial(3,0)*2 + binomial(3,1)*1 - binomial(3,2)*2 + binomial(3,3)*1 = -4.
		

Crossrefs

Continued fraction of e: A003417.
Binomial transform of continued fraction of e: A306809.

Programs

  • Mathematica
    nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[(-1)^(n + k)*Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 23 2020 *)
  • Sage
    def OEISInverse(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    econt = oeis('A003417')
    OEISInverse(50,econt)

Formula

a(n) = Sum{k=0...n}(-1)^(n+k)*binomial(n,k)*b(k), where b(k) is the k-th term of the continued fraction expansion of e.
Conjectures from Colin Barker, Mar 12 2019: (Start)
G.f.: (2 + 13*x + 37*x^2 + 55*x^3 + 42*x^4 + 14*x^5 + 2*x^6) / ((1 + x)*(1 + 3*x + 3*x^2)^2).
a(n) = - 7*a(n-1) - 21*a(n-2) - 33*a(n-3) - 27*a(n-4) - 9*a(n-5) for n>6.
(End)

A306809 Binomial transform of the continued fraction expansion of e.

Original entry on oeis.org

2, 3, 6, 12, 23, 46, 98, 213, 458, 972, 2051, 4322, 9098, 19113, 40054, 83748, 174767, 364086, 757298, 1572861, 3262242, 6757500, 13981019, 28894090, 59652314, 123032913, 253522382, 521957844, 1073741831, 2207135966, 4533576578, 9305762469, 19088743546, 39131924268
Offset: 0

Author

Sarah Arpin, Mar 11 2019

Keywords

Comments

Taking this sequence as a continued fraction it seems to converge to 2.31601650488979...

Examples

			For n = 3, the a(3) = binomial(3,0)*2 + binomial(3,1)*1 + binomial(3,2)*2 + binomial(3,3)*1 = 12.
		

Crossrefs

Cf. A003417 (continued fraction for e).

Programs

  • Mathematica
    nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 23 2020 *)
  • Sage
    def OEISbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + ((binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    econt = oeis('A003417')
    OEISbinomial_transform(50,econt)

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*b(k), where b(k) is the k-th term of the continued fraction expansion of e.
Conjectures from Colin Barker, Mar 12 2019: (Start)
G.f.: (2 - 11*x + 27*x^2 - 41*x^3 + 40*x^4 - 22*x^5 + 6*x^6) / ((1 - x)*(1 - 2*x)^2*(1 - x + x^2)^2).
a(n) = 7*a(n-1) - 21*a(n-2) + 37*a(n-3) - 43*a(n-4) + 33*a(n-5) - 16*a(n-6) + 4*a(n-7) for n>6.
(End)

A322519 Inverse binomial transform of the Apéry numbers (A005259).

Original entry on oeis.org

1, 4, 64, 1240, 27640, 667744, 17013976, 450174736, 12250723480, 340711148320, 9641274232384, 276704848753216, 8035189363318936, 235655550312118720, 6970100090159566480, 207674717284507191520, 6227433643414033714840, 187795334412416019255520
Offset: 0

Author

Sarah Arpin, Dec 13 2018

Keywords

Comments

Starting with the a(2) term, each term is divisible by 8. (Empirical observation.)

Examples

			a(2) = binomial(2,0)*A(0) - binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 - binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 64.
		

Crossrefs

Programs

  • Magma
    [(&+[(-1)^(n-k)*Binomial(n,k)*(&+[(Binomial(k,j)*Binomial(k+j,j))^2: j in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 13 2018
  • Maple
    a:=n->add(binomial(n,i)*(-1)^i*add((binomial(n-i,k)*binomial(n-i+k,k))^2,k=0..n-i),i=0..n): seq(a(n),n=0..20); # Muniru A Asiru, Dec 22 2018
  • Mathematica
    a[n_] := Sum[(-1)^(n-k) * Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    {a(n) = sum(k=0,n, (-1)^(n-k)*binomial(n,k)*sum(j=0,k, (binomial(k,j)*binomial(k+j,j))^2))};
    for(n=0, 20, print1(a(n), ", ")) \\ G. C. Greubel, Dec 13 2018
    
  • Sage
    def OEISInverse(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    Apery = oeis('A005259')
    OEISInverse(18,Apery)
    
  • Sage
    [sum((-1)^(n-k)*binomial(n,k)*sum((binomial(k,j)* binomial(k+j,j))^2 for j in (0..k)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 13 2018
    

Formula

a(n) = Sum_{i=0..n} C(n,i) * (-1)^i * A005259(n-i).
a(n) ~ 2^((5*n + 3)/2) * (1 + sqrt(2))^(2*n - 1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Dec 17 2018

A322518 Binomial transform of the Apéry numbers (A005259).

Original entry on oeis.org

1, 6, 84, 1680, 39240, 999216, 26899896, 752939424, 21691531800, 638947312080, 19155738105504, 582589712312064, 17930566188602136, 557417298916695600, 17477836958370383280, 552090876791399769600, 17552554240486710112920, 561230779055361080132880
Offset: 0

Author

Sarah Arpin, Dec 13 2018

Keywords

Comments

Starting with the a(3) term, each term is divisible by 8. (Empirical observation.)
The above is true and follows easily from the pair of known congruences for the Apéry numbers A(n): A(2*n) == 1 (mod 8) and A(2n+1) == 5 (mod 8). - Peter Bala, Jan 06 2020

Examples

			a(2) = binomial(2,0)*A(0) + binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 + binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 84.
		

Crossrefs

Programs

  • Julia
    function BinomialTransform(seq)
        N = length(seq)
        bt = Array{BigInt,1}(undef,N)
        bt[1] = seq[1]
        for k in 1:N-1
            next = BigInt(0)
            for j in 0:k next += binomial(k, j)*seq[j+1] end
            bt[k+1] = next
        end
    bt end
    BinomialTransform([A005259(n) for n in 0:18]) |> println # Peter Luschny, Jan 06 2020
  • Mathematica
    a[n_] := Sum[Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
  • Sage
    def OEISbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + ((binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    Apery = oeis('A005259')
    OEISBinom = OEISbinomial_transform(18,Apery.first_terms(20))
    

Formula

a(n) ~ 2^(n - 3/4) * 3^(n + 3/2) * (1 + sqrt(2))^(2*n - 1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Dec 17 2018
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all primes p and n a positive integer. - Peter Bala, Jan 06 2020