cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A322519 Inverse binomial transform of the Apéry numbers (A005259).

Original entry on oeis.org

1, 4, 64, 1240, 27640, 667744, 17013976, 450174736, 12250723480, 340711148320, 9641274232384, 276704848753216, 8035189363318936, 235655550312118720, 6970100090159566480, 207674717284507191520, 6227433643414033714840, 187795334412416019255520
Offset: 0

Views

Author

Sarah Arpin, Dec 13 2018

Keywords

Comments

Starting with the a(2) term, each term is divisible by 8. (Empirical observation.)

Examples

			a(2) = binomial(2,0)*A(0) - binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 - binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 64.
		

Crossrefs

Programs

  • Magma
    [(&+[(-1)^(n-k)*Binomial(n,k)*(&+[(Binomial(k,j)*Binomial(k+j,j))^2: j in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 13 2018
  • Maple
    a:=n->add(binomial(n,i)*(-1)^i*add((binomial(n-i,k)*binomial(n-i+k,k))^2,k=0..n-i),i=0..n): seq(a(n),n=0..20); # Muniru A Asiru, Dec 22 2018
  • Mathematica
    a[n_] := Sum[(-1)^(n-k) * Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    {a(n) = sum(k=0,n, (-1)^(n-k)*binomial(n,k)*sum(j=0,k, (binomial(k,j)*binomial(k+j,j))^2))};
    for(n=0, 20, print1(a(n), ", ")) \\ G. C. Greubel, Dec 13 2018
    
  • Sage
    def OEISInverse(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    Apery = oeis('A005259')
    OEISInverse(18,Apery)
    
  • Sage
    [sum((-1)^(n-k)*binomial(n,k)*sum((binomial(k,j)* binomial(k+j,j))^2 for j in (0..k)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 13 2018
    

Formula

a(n) = Sum_{i=0..n} C(n,i) * (-1)^i * A005259(n-i).
a(n) ~ 2^((5*n + 3)/2) * (1 + sqrt(2))^(2*n - 1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Dec 17 2018
Showing 1-1 of 1 results.