cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306834 Numerator of the barycenter of first n primes defined as a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).

Original entry on oeis.org

1, 8, 23, 3, 53, 184, 303, 65, 331, 952, 1293, 1737, 1135, 2872, 3577, 1475, 1357, 6526, 7799, 3073, 1344, 12490, 14399, 16535, 948, 502, 24367, 9121, 7631, 33914, 37851, 42043, 1663, 51290, 56505, 20647, 33875, 73944, 80457, 87377, 47358, 34106, 1033, 119023, 31972, 137042, 146959, 157663
Offset: 1

Views

Author

Andres Cicuttin, Mar 12 2019

Keywords

Comments

It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    Primes:= map(ithprime, [$1..N]):
    S1:= ListTools:-PartialSums(Primes):
    S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])):
    map(numer,zip(`/`,S2,S1)); # Robert Israel, Apr 07 2019
  • Mathematica
    a[n_]:=Sum[i*Prime[i],{i,1,n}]/Sum[Prime[i],{i,1,n}];
    Table[a[n]//Numerator,{n,1,40}]
  • PARI
    a(n) = numerator(sum(i=1, n, i*prime(i))/sum(i=1, n, prime(i))); \\ Michel Marcus, Mar 15 2019

Formula

a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
a(n) = numerator(A014285(n)/A007504(n)).