A306844 Number of anti-transitive rooted trees with n nodes.
1, 1, 2, 3, 7, 14, 36, 83, 212, 532, 1379, 3577, 9444, 25019, 66943, 179994, 487031, 1323706, 3614622, 9907911
Offset: 1
Examples
The a(1) = 1 through a(6) = 14 anti-transitive rooted trees: o (o) (oo) (ooo) (oooo) (ooooo) ((o)) ((oo)) ((ooo)) ((oooo)) (((o))) (((oo))) (((ooo))) ((o)(o)) ((o)(oo)) ((o(o))) ((o(oo))) (o((o))) ((oo(o))) ((((o)))) (o((oo))) (oo((o))) ((((oo)))) (((o)(o))) (((o(o)))) ((o((o)))) (o(((o)))) (((((o)))))
Links
- Gus Wiseman, The a(7) = 36 anti-transitive rooted trees.
- Gus Wiseman, The a(10) = 532 anti-transitive rooted trees.
Crossrefs
Programs
-
Mathematica
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])]; Table[Length[Select[rtall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
Extensions
a(16)-a(20) from Jinyuan Wang, Jun 20 2020
Comments