cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306854 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has at least 5 distinct Fermi-Dirac prime factors.

Original entry on oeis.org

1, 840, 3, 280, 9, 120, 7, 216, 5, 168, 11, 210, 4, 270, 13, 264, 15, 56, 27, 40, 21, 72, 33, 70, 12, 90, 28, 30, 36, 42, 20, 54, 35, 24, 45, 66, 52, 96, 44, 78, 55, 84, 10, 108, 14, 60, 18, 105, 8, 135, 22, 140, 6, 180, 26, 132, 32, 156, 34, 165, 38, 189, 46
Offset: 1

Views

Author

Rémy Sigrist, Mar 13 2019

Keywords

Comments

This sequence is a variant of A285487. Both sequences are permutations of the natural numbers and have similar graphical features.

Examples

			The first terms, alongside the Fermi-Dirac factorization of a(n) * a(n+1), are:
  n   a(n)  a(n) * a(n+1)
  --  ----  -------------
   1     1  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
   2   840  2^(2^0) * 2^(2^1) * 3^(2^1) * 5^(2^0)  * 7^(2^0)
   3     3  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
   4   280  2^(2^0) * 2^(2^1) * 3^(2^1) * 5^(2^0)  * 7^(2^0)
   5     9  2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1)  * 5^(2^0)
   6   120  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
   7     7  2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1)  * 7^(2^0)
   8   216  2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1)  * 5^(2^0)
   9     5  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
  10   168  2^(2^0) * 2^(2^1) * 3^(2^0) * 7^(2^0)  * 11^(2^0)
  11    11  2^(2^0) * 3^(2^0) * 5^(2^0) * 7^(2^0)  * 11^(2^0)
  12   210  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
		

Crossrefs

Cf. A064547, A285487, A306856 (inverse).

Programs

  • PARI
    See Links section.

Formula

A064547(a(n) * a(n+1)) >= 5.