cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306860 a(n) = Sum_{k=0..floor(n/9)} binomial(n,9*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24311, 48622, 92398, 168151, 295261, 504736, 850840, 1442101, 2523676, 4686826, 9373652, 20030039, 44612702, 100804436, 226444616, 499685777, 1076832989, 2261792303, 4631710931, 9263421862
Offset: 0

Views

Author

Seiichi Manyama, Mar 14 2019

Keywords

Crossrefs

Column 9 of A306846.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n, 9*k], {k, 0, Floor[n/9]}]; Array[a, 40, 0] (* Amiram Eldar, Jun 13 2021 *)
  • PARI
    {a(n) = sum(k=0, n\9, binomial(n, 9*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9-x^9))

Formula

G.f.: (1 - x)^8/((1 - x)^9 - x^9).
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + 2*a(n-9) for n > 8.