A306879 Smallest number m such that m, m+1, and m+2 all have exactly 2p divisors, where p = prime(n).
33, 242, 7939375, 76571890623, 104228508212890623, 1489106237081787109375, 273062471666259918212890623, 804505911103256259918212890623, 490685203356467392256259918212890623, 6794675247932944436619977392256259918212890623, 329757106427071213106619977392256259918212890623
Offset: 1
Keywords
Examples
33, 34, 35 all have exactly 2*prime(1) = 4 divisors, and 33 is the smallest number with this property, so a(1) = 33.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..50
- Vasilii A. Dziubenko, Vladimir A. Letsko, Consecutive positive integers with the same number of divisors, arXiv:1811.05127 [math.NT], 2018.
- Vladimir A. Letsko, Some new results on consecutive equidivisible integers, arXiv:1510.07081 [math.NT], 2015.
Comments