cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306908 Numbers k with exactly three distinct prime factors and such that phi(k) is a square.

Original entry on oeis.org

60, 114, 126, 170, 204, 240, 273, 285, 315, 364, 370, 380, 438, 444, 456, 468, 504, 540, 680, 816, 825, 902, 960, 969, 978, 1010, 1026, 1071, 1095, 1100, 1134, 1212, 1258, 1292, 1358, 1456, 1460, 1480, 1500, 1520, 1729, 1746, 1752, 1776, 1824, 1836, 1872
Offset: 1

Views

Author

Bernard Schott, Mar 16 2019

Keywords

Comments

This sequence is the intersection of A033992 and A039770.
The integers with only one prime factor and whose totient is a square are in A002496 and A054755, the integers with two prime factors and whose totient is a square are in A324745, A324746 and A324747.

Examples

			1st family: 273 = 3 * 7 * 13 and phi(273) = 12^2.
2nd family: 816 = 2^4 * 3 * 17 and phi(816) = 16^2.
3rd family: 6975 = 3^2 * 5^2 * 31 and phi(6975) = 60^2.
		

Crossrefs

Intersection of A033992 and A039770.
Cf. A002496, A054755 (only one prime factor), A324745, A324746, A324747 (two prime factors).

Programs

  • Maple
    filter:= n -> issqr(numtheory:-phi(n)) and nops
    (numtheory:-factorset(n))=3:
    select(filter, [$1..2000]); # after Robert Israel in A324745
  • Mathematica
    Select[Range[2000], And[PrimeNu@ # == 3, IntegerQ@ Sqrt@ EulerPhi@ #] &] (* Michael De Vlieger, Mar 31 2019 *)
  • PARI
    isok(n) = (omega(n)==3) && issquare(eulerphi(n)); \\ Michel Marcus, Mar 19 2019

Formula

1st family: The primitive terms are p*q*r with p,q,r primes and phi(p*q*r) = (p-1)*(q-1)*(r-1) = m^2. These primitives generate the entire family formed by the numbers k = p^(2s+1) * q^(2t+1) * r^(2u+1) with s,t,u >= 0, and phi(k) = (p^s * q^t * r^u * m)^2.
2nd family: The primitive terms are p^2 * q * r with p,q,r primes and phi(p^2 * q * r) = p*(p-1)*(q-1)*(r-1) = m^2. These primitives generate the entire family formed by the numbers k = p^(2s) * q^(2t+1) * r^(2u+1) with s >= 1, t,u >= 0, and phi(k) = (p^(s-1) * q^t * r^u * m)^2.
3rd family: The primitive terms are p^2 * q^2 * r with p,q,r primes and phi(p^2 * q^2 * r) = p*q*(p-1)*(q-1)*(r-1) = m^2. These primitives generate the entire family formed by the numbers k = p^(2s) * q^(2t) * r^(2u+1) with s,t> = 1, u >= 0, and phi(k) = (p^(s-1) * q^(t-1) * r^u * m)^2.