A306895 Sum over all partitions of n of the power tower evaluation x^y^...^z, where x, y, ..., z are the parts in (weakly) increasing order.
1, 1, 3, 5, 11, 18, 72, 387, 134349386, 115792089237316195423570985008687907853269984665640566457309223244801371506483
Offset: 0
Keywords
Examples
a(0) = 1 because the empty partition () has no parts, the exponentiation operator ^ is right-associative, and 1 is the right identity of exponentiation. a(6) = 1^1^1^1^1^1 + 1^1^1^1^2 + 1^1^2^2 + 2^2^2 + 1^1^1^3 + 1^2^3 + 3^3 + 1^1^4 + 2^4 + 1^5 + 6 = 1 + 1 + 1 + 16 + 1 + 1 + 27 + 1 + 16 + 1 + 6 = 72.
Links
- Eric Weisstein's World of Mathematics, Power Tower
- Wikipedia, Exponentiation
- Wikipedia, Identity element
- Wikipedia, Operator associativity
- Wikipedia, Partition (number theory)
Programs
-
Maple
f:= l-> `if`(l=[], 1, l[1]^f(subsop(1=(), l))): a:= n-> add(f(sort(l, `<`)), l=combinat[partition](n)): seq(a(n), n=0..9);
Comments