A307037 The unitary analog of the alternating sum-of-divisors function (A206369).
1, 1, 2, 5, 4, 2, 6, 7, 10, 4, 10, 10, 12, 6, 8, 17, 16, 10, 18, 20, 12, 10, 22, 14, 26, 12, 26, 30, 28, 8, 30, 31, 20, 16, 24, 50, 36, 18, 24, 28, 40, 12, 42, 50, 40, 22, 46, 34, 50, 26, 32, 60, 52, 26, 40, 42, 36, 28, 58, 40, 60, 30, 60, 65, 48, 20, 66, 80
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, A survey of the alternating sum-of-divisors function, Acta Universitatis Sapientiae, Mathematica, Vol. 5, No. 1 (2013), pp. 93-107, section 6, "Unitary analog".
Programs
-
Mathematica
f[p_,e_] := p^e + (-1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, e=f[k,2]; f[k,1] = f[k,1]^e+(-1)^e; f[k,2]=1); factorback(f); \\ Michel Marcus, Mar 23 2019
Formula
Multiplicative with a(p^e) = p^e + (-1)^e.
Equals Sum_{d||n} d*lambda(n/d), where the sum is over the unitary divisors of n, and lambda(n) is Liouville's function (A008836).
Sum_{k=1..n} a(k) ~ c*n^2 where c = 63*zeta(3)/(2*Pi^4) = 0.388719...
Dirichlet g.f. is zeta(s-1)*zeta(2*s)*zeta(2*s-1) / (zeta(s)*zeta(4*s-2)) (see L. Tóth, A survey ..., p. 101). - Werner Schulte, Feb 07 2021
Comments