cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307045 a(n) = Sum_{k=0..floor(n/9)} (-1)^k*binomial(n,9*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -9, -54, -219, -714, -2001, -5004, -11439, -24309, -48618, -92358, -167769, -292599, -490104, -783540, -1172907, -1562274, -1562274, 0, 6216183, 24581880, 72182016, 186061536, 443185425, 997483653, 2146130559, 4443424371, 8886848742
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2019

Keywords

Crossrefs

Column 9 of A307039.
Cf. A306860.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n,9*k], {k,0,Floor[n/9]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
  • PARI
    {a(n) = sum(k=0, n\9, (-1)^k*binomial(n, 9*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9+x^9))

Formula

G.f.: (1 - x)^8/((1 - x)^9 + x^9).
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) for n > 8.