A307055 Even k such that psi(m) = k has no solution, where psi is the Dedekind psi function A001615.
2, 10, 16, 22, 26, 28, 34, 40, 46, 50, 52, 58, 64, 66, 70, 76, 78, 82, 86, 88, 92, 94, 100, 106, 116, 118, 122, 124, 130, 134, 136, 142, 146, 148, 154, 156, 166, 170, 172, 178, 184, 188, 190, 196, 202, 206, 208, 210, 214, 218, 220, 226, 232, 236, 238, 244, 246, 250
Offset: 1
Keywords
Examples
2 is a term because there exists no m such that psi(m) = 2. 4 is not a term because 4 = 3*(3+1)/3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N psi:= proc(n) local p; n*mul(1+1/p, p=numtheory:-factorset(n)) end proc: sort(convert({seq(i,i=2..N,2)} minus map(psi, {$1..N}), list)); # Robert Israel, Apr 17 2019
-
Mathematica
M = 1000; (* to get all terms <= M *) psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; Range[2, M, 2] ~Complement~ (psi /@ Range[M]) (* Jean-François Alcover, Aug 01 2020, after Maple *)
-
PARI
dpsi(n) = = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615 isok(n) = {if (!(n%2), for (k=1, n-1, if (dpsi(k) == n, return(0));); return (1););} \\ Michel Marcus, Mar 22 2019
Comments