A307077 Let a(1)=3; for n > 1, let a(n) be the least positive integer k such that k > a(n-1), a(1)^2 + ... + a(n-1)^2 + k^2 is a square and the Pythagorean triple sqrt(a(1)^2 + ... + a(n-1)^2), a(n), sqrt(a(1)^2 + ... + a(n)^2) is primitive.
3, 4, 12, 84, 132, 12324, 89892, 2447844, 28350372, 295742791596, 171480834409712412, 633511848768467916, 1616599508725767821225590810932, 4158520496012961741299012805876, 115366949386695884000892071516523067413910188
Offset: 1
Keywords
Programs
-
PARI
lista(NN) = s=9;k=3;print1(k);for(n=1,NN-1,v=divisors(s);j=#v;while(v[j]*(v[j]+2*k)>s,j--);while(gcd((s-v[j]^2)/(2*v[j]), s)!=1, j--);print1(", ", k=(s-v[j]^2)/(2*v[j]));s+=k^2); \\ Jinyuan Wang, May 31 2019
Formula
The numbers are generated by using the well-known characterization of primitive Pythagorean triples, namely (a,b,c) is a PPT iff there are positive integers j,k of opposite parity with j > k, and gcd(j,k)=1 such that a = j^2 - k^2, b = 2jk, c = j^2 + k^2.
Extensions
a(14)-a(15) from Jinyuan Wang, Jun 01 2019
Comments