A307078 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).
1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 2, 2, 2, 2, 2, 2, 2, 2, ... 7, 4, 3, 3, 3, 3, 3, 3, 3, ... 15, 8, 5, 4, 4, 4, 4, 4, 4, ... 31, 16, 10, 6, 5, 5, 5, 5, 5, ... 63, 32, 21, 12, 7, 6, 6, 6, 6, ... 127, 64, 43, 28, 14, 8, 7, 7, 7, ... 255, 128, 86, 64, 36, 16, 9, 8, 8, ... 511, 256, 171, 136, 93, 45, 18, 10, 9, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
Formula
A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+1,k*j+1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i,k*j) * binomial(n-i,k*j).