A307086 Decimal expansion of 4*(5 - sqrt(5)*log(phi))/25, where phi is the golden ratio (A001622).
6, 2, 7, 8, 3, 6, 4, 2, 3, 6, 1, 4, 3, 9, 8, 3, 8, 4, 4, 4, 4, 2, 2, 6, 7, 0, 6, 8, 1, 9, 7, 5, 7, 8, 2, 9, 8, 3, 0, 1, 7, 1, 7, 2, 6, 9, 8, 3, 8, 8, 4, 1, 3, 8, 0, 9, 7, 1, 9, 7, 5, 5, 8, 4, 0, 2, 9, 7, 5, 5, 1, 3, 8, 1, 5, 5, 4, 7, 2, 1, 5, 4, 5, 5, 4, 0, 3, 8, 9, 4, 1, 2, 1, 1, 1, 2, 0, 1, 7, 8, 3, 7, 4, 6, 7, 7, 8, 2, 8, 8, 6, 7, 0, 2, 9, 3, 8, 5, 7, 4
Offset: 0
Examples
1/1 - 1/2 + 1/6 - 1/20 + 1/70 - 1/252 + ... = 0.62783642361439838444422670681975782983017172698388...
Links
- Renzo Sprugnoli, Sums of reciprocals of the central binomial coefficients, INTEGERS 6 (2006) #A27
- Eric Weisstein's World of Mathematics, Central Binomial Coefficient
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[4 (5 - Sqrt[5] Log[GoldenRatio])/25, 10, 120][[1]]
-
PARI
4*(5 - sqrt(5)*log((sqrt(5)+1)/2))/25 \\ Charles R Greathouse IV, May 15 2019
Formula
Equals Sum_{k>=0} (-1)^k/binomial(2*k,k).
Equals Sum_{k>=0} (-1)^k*(k!)^2/(2*k)!.
Comments