cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307096 Positive integers m such that for any positive integer k the last k bits of the binary expansion of m is not a multiple of 3.

Original entry on oeis.org

1, 5, 13, 17, 29, 37, 49, 61, 65, 77, 101, 113, 125, 133, 145, 157, 193, 205, 229, 241, 253, 257, 269, 293, 305, 317, 389, 401, 413, 449, 461, 485, 497, 509, 517, 529, 541, 577, 589, 613, 625, 637, 769, 781, 805, 817, 829, 901, 913, 925, 961, 973, 997, 1009
Offset: 1

Views

Author

John Rickert, Mar 24 2019

Keywords

Comments

The number of terms less than 2^n is the n-th Fibonacci number F(n), A000045.
The number of terms between 2^(n-1) and 2^n in the sequence is the Fibonacci number F(n-2), A000045.
If 2^(n-1) <= x < 2^n, then x is in the sequence if and only if x is not divisible by 3 and x - 2^(n-1) is in the sequence. - Robert Israel, Apr 25 2019

Examples

			29 is 11101_2 and none of 11101_2, 1101_2, 101_2, 1_2 are divisible by 3.
		

Crossrefs

Programs

  • Maple
    f := n-> if(n != 0, add(2^(k-1)*`if`((n mod 2^k) mod 3 = 0, 1, 0), k = 1 .. ceil(log(n)/log(2))), 0);
    ker := []; for n from 1 to 1024 do if f(n) = 0 then ker := [op(ker), n] end if end do; ker;
    # Alternative:
    A1:= {1}: A2:= {}:
    for d from 1 to 12 do
      if d::odd then A1:= A1 union map(`+`,A2,2^d)
      else A2:= A2 union map(`+`,A1,2^d)
      fi
    od:
    sort(convert(A1 union A2,list)); # Robert Israel, Apr 25 2019
  • Mathematica
    Select[Range[10^3], Function[s, NoneTrue[Array[FromDigits[Take[s, -#], 2] &, Length@ s], Mod[#, 3] == 0 &]]@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(n) = {if (n % 3, my(b=binary(n)); for (k=1, #b-1, b[k] = 0; if ((fromdigits(b, 2) % 3) == 0, return (0));); return (1);); return (0);} \\ Michel Marcus, Apr 24 2019

Formula

(a(n)+1)/2 = A219608(n), the n-th odd term in A060142.