cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307104 a(n) is the number which, when concatenated with A003226(n), the n-th automorphic number, gives (A003226(n))^2.

Original entry on oeis.org

0, 0, 2, 3, 6, 57, 141, 390, 8790, 82128, 11963, 793212, 835571, 5054322, 1661682, 75880433, 45322418, 619541169, 319375992, 6745157241, 3317093849, 66891312600, 843114912509, 9837094694375, 16065496578813, 35901922360062, 67557477392256, 547721051611007
Offset: 1

Views

Author

Christopher Hohl, Mar 24 2019

Keywords

Comments

Let na and nb represent the indices of the preceding and next A003226(n)'s beginning with a 9, and where (na - nb) >= 3 (note that the first such 'zone' begins with an exception for which the index A003226(na) = 1). Then for na < n < nb and such that n == (na + 1) mod 2, it appears that A003226(n) - a(n) = A003226(n+1) - a(n+1) = k.
In such cases, it also appears that a(n)*a(n+1) = k^2 - k.

Examples

			For n=4, A003226(4)=6, (A003226(4))^2=36. So a(4)=3.
For n=13, A003226(13)=2890625, (A003226(13))^2=8355712890625. So a(13)=835571.
		

Crossrefs

Programs

  • PARI
    auto(n) = {n<3 & return(n-1); my(i=10, j=10, b=5, c=6, a=b); for( k=4, n, while(b<=a, b=b^2%i*=10); while(c<=a, c=(2-c)*c%j*=10); a=min(b, c)); a; } \\ A003226
    a(n) = {my(m = auto(n), dm = digits(m), dm2 = digits(m^2)); fromdigits(vector(#dm2 - #dm, k, dm2[k]));} \\ Michel Marcus, May 18 2019

Formula

a(n) = A003226(n)*(A003226(n) - 1) / 10^A055642(A003226(n)).