A307105 Number of rational numbers which can be constructed from the set of integers between 1 and n, through a combination of multiplication and division.
1, 1, 3, 9, 21, 63, 117, 351, 621, 1161, 2043, 6129, 8631, 25893, 45135, 71685, 102285, 306855, 420309, 1260927, 1755513, 2671299, 4571073, 13713219, 17156853, 25778169, 43930755, 59315085, 80765235, 242295705, 295267275, 885801825
Offset: 0
Keywords
Examples
a(2) = 3 because {1,2} can create {1/2, 1, 2}. a(3) = 9 because {1,2,3} can create {1/6, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 6}. a(4) = 21 because {1,2,3,4} can create {1/24, 1/12, 1/8, 1/6, 1/4, 1/3, 3/8, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 8/3, 3, 4, 6, 8, 12, 24}.
Links
- Yan Sheng Ang, Table of n, a(n) for n = 0..51
Programs
-
Maple
s:= proc(n) option remember; `if`(n=0, {1}, map(x-> [x, x*n, x/n][], s(n-1))) end: a:= n-> nops(s(n)): seq(a(n), n=0..20); # Alois P. Heinz, Jul 29 2019
-
Mathematica
L={}; s={1}; Do[s = Union[s, s/k, s*k]; AppendTo[L, Length@ s], {k, 13}]; L (* Giovanni Resta, Jul 07 2019 *)
Formula
a(p) = 3 * a(p-1), for p prime. - Giovanni Resta, Jul 07 2019
Extensions
a(9)-a(31) from Giovanni Resta, Jul 07 2019
Comments