cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307134 Terms of A216427 that are the sum of two coprime terms of A216427.

Original entry on oeis.org

7688, 70688, 95048, 120125, 131072, 186003, 219488, 219501, 265837, 286443, 304175, 371293, 412232, 464648, 465125, 596183, 628864, 699867, 729632, 732736, 834632, 860672, 1104500, 1119371, 1162213, 1173512, 1257728, 1290496, 1318707, 1431125, 1438208, 1472207, 1527752, 1597696, 1601613
Offset: 1

Views

Author

Robert Israel, Mar 26 2019

Keywords

Comments

It is possible for a term of the sequence to be such a sum in more than one way, e.g., 1119371 = 215168 + 904203 = 366368 + 753003.
There are parametric solutions, and in particular the sequence is infinite. For example, 3^3*(-44100*k^2 - 21140*k + 471)^2 + 5^3*(-26460*k^2 + 4788*k + 865)^2 = 2^3*(132300*k^2 + 8820*k + 3527)^2, and these are coprime unless k==3 (mod 13).

Examples

			a(3)=95048 is in the sequence because 95048 = 2^3*109^2 = 45125 + 49923 = 5^3*19^2 + 3^3*43^2, and gcd(45125,49923)=1.
		

Crossrefs

Cf. A216427.

Programs

  • Maple
    N:= 10^6: # to get terms <= N
    A23:= {seq(seq(x^2*y^3, x= 2.. floor(sqrt(N/abs(y)^3))),y=2..floor(N^(1/3)))}: n:=nops(A23):
    Res:= NULL:
    for k from 1 to n do
      z:= A23[k];
      for i from 1 to n do
        x:= A23[i];
        if 2*x > z then break fi;
        if member(z-x,A23) and igcd(z,x)=1 then  Res:= Res, z; break fi
    od od:
    Res;