A307157 a(n) is the Narumi-Katayama index of the Fibonacci cube Gamma(n).
1, 2, 24, 1152, 1399680, 290237644800, 520105859481600000000, 3435834286784202670080000000000000000, 3045775242579858715944293498880000000000000000000000000000000000
Offset: 1
Examples
a(2)=2 because the Fibonacci cube Gamma(2) is the path tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Narumi-Katayama index is 1*1*2=2.
Links
- I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters, Vol. 25, No. 10 (2012), 1435-1438.
- S. Klavžar, Structure of Fibonacci cubes: a survey, Journal of Combinatorial Optimization, Vol. 25, No. 4 (2013), 505-522.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
Programs
-
Maple
T := (n,k) -> add(binomial(n-2*i,k-i)*binomial(i+1,n-k-i+1), i=0..k): seq(mul(j^T(n,j), j=1..n), n=1..10);
Formula
a(n) = Product_{k=1..n} k^T(n, k), where T(n, k) = Sum_{i=0..k} binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1). T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825).
Comments