A307212
a(n) is the Narumi-Katayama index of the Lucas cube Lambda(n).
Original entry on oeis.org
0, 2, 3, 256, 38880, 1289945088, 42855402240000000, 605828739547255327948800000000, 13263549731442762279026688000000000000000000000000000, 1334793240853871268746431553848403294648071618560000000000000000000000000000000000000000000
Offset: 1
a(2) = 2 because the Lucas cube Lambda(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Narumi-Katayama index is 1*1*2 = 2.
- I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters, Vol. 25, No. 10 (2012), 1435-1438.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
-
G := (1+(1-y)*x+x^2*y^2+(1-y)*x^3*y-(1-y)^2*x^4*y)/((1-x*y)*(1-x^2*y)-x^3*y):
g := expand(series(G, x=0, 40)): T := (n, k) -> coeff(coeff(g, x, n), y, k):
a := n -> mul(k^T(n, k), k=0..n): lprint(seq(a(n), n=1..10));
A307208
a(n) is the forgotten index of the Fibonacci cube Gamma(n).
Original entry on oeis.org
2, 10, 52, 158, 466, 1192, 2914, 6722, 14972, 32286, 67914, 139824, 282754, 562970, 1105892, 2146846, 4124258, 7849496, 14815202, 27752338, 51632620, 95465502, 175508250, 320981472, 584214530, 1058602666, 1910305300, 3434059166, 6151218034, 10981579528
Offset: 1
a(2) = 10 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the forgotten index is 1^3 + 1^3 + 2^3 = 10.
- B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (4), 1184-1190, 2015.
- S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
-
T := (n,k) -> add(binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1), i=0..k):
seq(add(T(n,k)*k^3, k=1..n), n=1..30);
-
T(n,k) = sum(i=0, k, binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1));
a(n) = sum(k=1, n, T(n,k)*k^3); \\ Michel Marcus, Mar 30 2019
Showing 1-2 of 2 results.
Comments